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Abstract

The various robust linear programming models
investigated so far in the literature essentially
appear to be based either on what is referred to
as ‘rowwise’ uncertainty models or on ’colum-
nwise’ uncertainty models (these basically as-
sume that the rows - resp: the columns - of the
constraint matrix are subject to changes within
a well specified uncertainty set). In this paper,
we discuss a special case of columnwise uncer-
tainty namely the subclass of robust LP models
with uncertainty limited to the right handside
only. (this subclass does not appear to have
been significantly investigated so far). In this
context we introduce the concept of * two-stage
robust LP model’ as opposed to the standard
case (which might be referred to as ’single-stage
robust LP model’) and we address the question
of whether LP duality can be used to convert a
LP problem with RHS-uncertainty into a robust
LP problem with uncertainty on the objective
function. We show how to derive both state-
ments of (a) the dual to the robust model and
(b) the robust version of the dual. The result-
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ing expressions of the objective function to be
optimized in both cases, appear to be clearly
distinct. Moreover, from a complexity point-
of-view, one appears to be efficiently solvable
(it reduces to a convex optimization problem)
whereas the other, as a nonconvex optimization
problem, is expected to be computationally dif-
ficult in the general case. As an application of
the 2-stage robust LP model introduced here,
we next investigate the robust PERT scheduling
problem, considering two possible natural ways
of specifying the uncertainty set for the task du-
rations: the case where the uncertainty set is a
scaled ball with respect to the L., norm; the
case where the uncertainty set is a scaled Ham-
ming ball of bounded radius (which, though lead-
ing to a quite different model, bears some re-
semblance to the well-known Bertsimas-Sim ap-
proach to robustness). We show that in both
cases, the resulting robust optimization prob-
lem can be efficiently solved in polynomial time.

1 Introduction

Various models for handling robustness objec-
tives with respect to uncertainties on some spec-
ified coefficients in linear programming mod-
els have been proposed in the literature. We
can mention Soyster (1973), Ben-Tal and Ne-



mirovski (1998, 2000), Bertsimas and Sim (2003,
2004).

The various approaches proposed can roughly
be divided into two distinct categories, depend-
ing on whether the underlying uncertainty model
refers to possible fluctuations on the row vec-
tors of the constraint matrix (we call this "row-
wise uncertainty’), or on column vectors (we
call this ’columnwise uncertainty’).

Columnwise uncertainty was first considered
by Soyster (1973). In this model each column
A; of the m X n constraint matrix is either sup-
posed to be exactly known, or is only known
to belong to a given subset K; C R™ ("uncer-
tainty set’). The cost vector and the right hand-
side are supposed to be certain. A robust solu-
tion is a solution which is feasible for all possi-
ble choices of the uncertain column vectors in
their respective uncertainty sets. With this def-
inition, assuming nonnegativity constraints on
all variables of the LP, it can easily be shown
that the problem of finding an optimal robust
solution reduces to solving an ordinary LP with
constraint matrix A = (a;;) where, Vi, j, the
coefficient a; ; is defined as:

® a;; = MaxX,cx,{v;} in case of a ith con-
straint of the form <

® a;; = minyeg,{v;} in case of a ith con-
straint of the form >

Note that the above maximization (or minimiza-
tion) can easily be carried out if we assume the
uncertainty sets either of finite cardinality (and
not too big !), or closed convex.

As observed by many authors, a drawback
of Soyster’s model is that it usually leads to
rather conservative solutions, in other words the
price to pay for robustness in the above sense is
often too high.

Contrasting with the above, rowwise uncer-
tainty has attracted more interest and has been
studied, among others, by Ben-Tal and

Nemirovski (1998, 2000), and more recently by
Bertsimas and Sim (2003, 2004).

Ben-Tal and Nemirovski start with the as-
sumption that each row A; of the constraint ma-
trix belongs to a known uncertainty set consist-
ing of an ellipsoid £; C R" , and a solution
xr € R™ x > 0 is said to be robust in this con-
text iff it satisfies:

forall ¢ : Azl’ S bz,VAZ S Ez

Ben-Tal and Nemirovski then show that finding
an optimal robust solution reduces to solving a
conic quadratic problem, which can be done in
polynomial time.

A way to obviate nonlinearity, while retain-
ing the idea of rowwise uncertainty, was pro-
posed by Bertsimas and Sim (2003, 2004), con-
sidering a slightly different model of uncertainty.
More precisely, they assume that each uncertain
coefficient a; ; can take values in a given inter-
val [a; ; — o ;,a;; + ;] and, for each row 4,
a positive parameter I'; > 0 (not larger than the
total number of uncertain coefficients in row %)
is considered. A solution x is then qualified as
I'—robust (in the sense of Bertsimas and Sim)
iff for all 7 = 1, ..., m this solution satisfies the
1th constraint for all possible choices of the co-
efficients in row ¢ such that at most I'; of the
uncertain coefficients in the row are allowed to
deviate from the nominal values qa; ;. (note that
the above statement implicitly assumes the I';
parameters to be integers, but Bertsimas and
Sim show that a slightly more general defini-
tion, allowing for nonintegral values of the I';’s
can be handled in the same way). With this
model of uncertainty, Bertsimas and Sim show
that finding an optimal I'—robust solution can
be reduced to solving an ordinary linear pro-
gram only moderately increased in size, thus
opening the way to large scale applications. More-
over the approach readily extends to optimiza-
tion problems including integrality constraints
on all or part of the variables, in that case the ro-



bust version of the problem is a MIP, but, again,
the resulting robust model is only moderately
increased in size as compared with the original
model.

In the present paper we investigate a spe-
cific subclass of robust LP decision problems
with columnwise uncertainty, namely LP prob-
lems with uncertainty on the right-handside co-
efficients only. To handle such problems, a first
natural idea would be to use duality to reformu-
late them as robust LP’s with uncertainty on the
objective. This is the subject of section 2 below.

2 Duality and robustness for
LP’s with uncertainty in the
RHS

We first address in this section the question of
whether duality can prove in any way useful
to convert a columnwise uncertain linear pro-
gram into a rowwise uncertain linear program,
assuming of course the same uncertainty model
for the columns of the given linear program and
for the corresponding rows in the dual.

Intuitively, no nice (i.e. strong) duality re-
sult is to be expected when taking into account
robustness constraints since, in both the primal
and the dual, there is a price to pay for uncer-
tainty, therefore: if we maximize in the primal,
the robust primal optimal solution value will be
(in general strictly) less than the optimal solu-
tion value of the 'nominal’ primal LP; and min-
imizing in the dual will lead to a robust dual op-
timal solution value (in general) strictly larger
than the same value.

Let us illustrate the phenomenon on a small
typical example. Consider the following LP (a
continuous knapsack problem actually) with two
uncertain coefficients a; and a, in the constraint

matrix:

Maximize 4x; + 39
P) s.t:
a1r1 + asxry < 4
120,29 >0

the standard LP dual of which reads:

Minimize 4u
(D) S.t:
aiu >4
asu > 3
u>0

Let us assume that the uncertainty set for a; is
the real interval [2, 3] , the uncertainty set for a,
is the real interval [1, 2], and let us take as defi-
nition of a robust solution in both (P) and (D) a
solution which is feasible for any possible val-
ues of a; and as in their respective uncertainty
sets. Then it is easily seen that the optimal ro-
bust primal solution is z° = [0, 2] with corre-
sponding primal objective function value 6; and
the optimal robust dual solution is u° = 3 with
corresponding dual objective function value 12.
This example thus clearly shows that no natural
extension of the usual properties related to LP
duality is to be expected in the context of robust
Linear Programming.

A special case of columnwise uncertainty in
Linear Programming is when uncertainty only
concerns the coefficients of the right handside
(RHS). Such problems frequently arise in prac-
tical applications. As a typical example, we
mention the robust PERT scheduling problem
with uncertainty on the durations of (some of)
the tasks, assuming that a robust earliest termi-
nation date has to be determined. More pre-
cisely, we want to determine the minimum to-
tal duration of the project under any possible
assignment of task durations, taken in a given



uncertainty set. The 2-stage robust model dis-
cussed in 3.2 below will appear to be relevant
to such applications.

Consider the following LP:

max CT.Z‘

Ax <b
r >0

and assume that the right handside b is not known

exactly, but only known to belong to some un-
certainty set B C R™. The set B may be fi-
nite or infinite (we will introduce additional as-
sumptions on this set when necessary).

Two distinct robustness models for LP’s with
uncertain RHS will be successively discussed
in the following sections, namely single-stage

robust decision models (Section 3) and two-stage

robust decision models (Section 4). For both
cases it will be shown that, even in the restricted
situation addressed here (uncertainty in the RHS
only) one cannot use standard duality theory to
convert a columnwise uncertain linear program
into a rowwise uncertain linear program while
preserving equivalence. Also, examples will be
provided to show that the 2-stage robust LP de-
cision model is capable of producing less con-
servative solutions as compared with the single
stage robust LP model.

3 Single-stage robust (LP) de-
cision model

We first consider the simplest case where the
values of all the decision variables x have to be
fixed (taking into account uncertainty) before
we get any kind of information on the actual re-
alization of the uncertain parameters. In such
a simple model (indeed a special case of Soys-
ter’s model) feasibility has to be ensured for any
b € B, and the problem to be solved simply re-

duces to:
max CT.%'
Az <D
r >0

where, Vi, b, = minyep{b; }
The (standard) LP dual to the above prob-
lem reads:

(D1) min u’b
ul'A>c
u >0

On the other hand, if we consider the dual
to:

max ¢ T

Az <b

we get:

min  u’b
ul A

u

>c

Now consider the robust version of this dual
problem where the cost vector b is uncertain
and can take any value in B. A simple and nat-
ural objective in this context is to find u achiev-
ing a minimum value of max u”b over all pos-
sible b € B, thus leading to:

(D2) min, maxyep {u’b}
s.t: ulTA>c
u>0
It is clearly realized that (D1) and (D2) are

completely different optimization problems on
the same solution sets since,

Yu > 0,ulbh < max{uTb}
beB



with strict inequality holding in the general case.
If the set B is either finite, or closed con-
vex, it is observed that (D2) can be efficiently
solved via standard convex optimization tech-
niques since the function:
u — max{u’ b}
beB
is convex. Also, in this case, b can be efficiently
computed since minye{b;} too is a convex op-
timization problem, therefore problem (D1), too,
can be efficiently solved.

4 Two-stage robust (LP) de-
cision model

It frequently arises in applications that the pro-
cess of decision-making under uncertainty can
be decomposed in two successive steps (two-
stage decision making) or more (multi-stage de-
cision making). For simplicity of presentation,
we restrict here to the case of two-stage deci-
sion making. In this case, the set of decision
variables x is decomposed (partitioned) into two
distinct sets of variables which we denote y and
z. The y variables concern the decisions to be
taken in the first stage (before knowing any-
thing about which realization of uncertainty will
arise) and the z variables concern the decisions
to be taken in the second stage (after realization
of uncertainty).

Limiting ourselves, to make the discussion
easier to follow, to the case where the objective
function only depends on the decision variables
of the first stage, our decision problem can thus
be rewritten:

D max 'y
st: Fy+Gz>b
y=>0,220

where 7, b are vectors and F' and GG are matrices
of appropriate dimensions. (Observe that the

reason for restricting to the case of an objective
not depending on the z variables is only for the
sake of simplicity in the presentation, our two-
stage robust decision model would readily han-
dle the general case of an objective depending
on both the y and z variables).

Now, since the RHS b in (I) is uncertain,
we have to make our robustness objectives pre-
cise. In the sequel, we consider robustness for
a solution y by requiring that feasibility can be
ensured for any possible RHS b € B by us-
ing the second stage decision variables z (by
analogy with the terminology used in stochastic
programming, the z variables might be referred
to as 'recourse’ variables). So, if we define
Y ={y/y > 0andVb € B,32 > 0: Gz <
b — Fy}, we want to solve:

T
max{7" y}.

Note that in the above, for any given robust so-
lution y, the value taken by the z variables de-
pends on which b € B is actually realized. This
is an important feature of our model which ex-
plains why it can produce less conservative so-
lutions as compared with Soyster’s model (see
example given in Remark 1 below).

According to Farkas” Lemma, we know that,
for fixed b € B, a necessary and sufficient con-
dition for the existence of z > 0 verifying
Gz < b— Fyisthat u? (b — Fy) > 0 for all u
in the polyhedral cone:

C = {u/uTG > 0and u > 0}.

Denoting u!, u?, ..., uP, the extreme rays of
the above cone, the set Y can equivalently be
represented as the system of linear inequalities:

(W) Fy < (w)'b,¥b€ B,Vj=1,..p
which is equivalent to:

nT < . = min(u)¥
(W) Fy < w, Ibrélél(u)b



The robust 2-stage decision problem is then
reformulated as:

(D’ max 7"y
st (W)Y Fy<w Vj=1,...,p
y=>0

Since we are interested in investigating du-
ality in the context of robustness, let us state
the (standard) dual to (I)’. So, introducing dual
variables \;, (j = 1,...p), the dual to (I)’ can
be written as:

min g Nw? =Y\ min(u/)Th
- — "7 beB
j j

s.t: Z/\jFTuj >y
J
)\j Z O,Vj = 1, P
and since: {u/u = Y Au/,\; > 0} =
{u/GTu > 0,u > 0}, this can be rewritten
as:

(DI’ minmin u’b
u beB
s.t: FTy > y
GTu>0
u>0

or , equivalently if we denote W denote the set
of solutions to (DI)’
. . T
e .
An a priori different way of using duality
in our context would be to take the (standard)
LP dual to (I) for fixed b, and then to carry out
robustness analysis with respect to the coeffi-
cients b of the objective in the dual, allowing b
to take all possible values in B . The LP dual to
(I) reads:

(D) minu’b
s.t: FTy > v

A natural robust version of (DI) consists in
finding the dual solution © minimizing the value
of uT'b produced by the worst possible b, reads:

: T
2
e o @
which is to be contrasted with (1): indeed, it is
seen that the robust version of the dual signif-
icantly differs from the dual of the robust ver-
sion of the initial (primal) problem (I) because
the function of u to be minimized is rbnig{uTb}
S

in one case, and nbnax{uTb} in the other case.
€B

It is worth observing that this structural dif-
ference between the two functions also implies
a difference with respect to the practical solv-
ability of the corresponding problems. The ob-
jective function in (2) is convex in u, making
the robust version of (DI) efficiently solvable,
whereas the objective in (1) is concave in wu,
making (DI)’ and thus (by standard LP duality)
(I)’ too, difficult problems in the general case.

Remark 1: As already suggested above, the
two-stage robust decision model proposed here
is capable of producing less conservative solu-
tions as compared with Soyster’s model. The
reason for this is that if, for a given uncertainty
set B, we consider Soyster’s model for problem
(I), the problem to be solved is

T
2“5%{7 y}

where the set Y; is defined as {y/y > 0and
d2 > 0: Gz < b— Fy} with b defined as:

Vi, b; = minid;}

It is easily seen that Y; C YV = {y/y >
OandVb € B,32 > 0 : Gz < b— Fy} and
cases where strict inclusion holds (leading to an
improved robust optimal solution value over the
optimal value of Soyster’s model) can easily be
found, as illustrated by the following example.



In this example we consider 3 variables y >
0,z > 0and z, > 0, and 3 constraints:

y—z < b
y—20< by
Zl+22§ b3

and the uncertainty set B is taken as the set con-
taining the two vectors (1,0,1)7 and (0, 1,1)7.
The objective function is to maximize y. It is
easily checked that the set Y corresponding to
Soyster’s model is in this case the real interval
[0,1/2] leading to an optimal robust solution
value 0.5. On the other hand, the set Y cor-
responding to our two-stage model is the real
interval [0, 1] leading to the (less conservative)
optimal robust solution value 1. Indeed, the
value y = 1 is feasible in our model because, in
case b = (1,0,1)" occurs, we can take z; = 0
and z, = 1; and, in case b = (0,1,0) oc-
curs, we can take z; = 1 and zo = 0. (Ob-
serve, as already pointed out above, that the
value taken by the z variables indeed depends
on which b € B is actually realized). Of course,
this example does not rule out the possibility
of having Y = Y for some special instances.
As will be seen in the next section, this possi-
bility will arise in connection with the robust
PERT scheduling problem, in the special case
(referred to there as Case 1) where the uncer-
tainty set on the task durations is the cartesian
product of a family of real intervals.

S An application of the 2-stage

robust LP model with RHS
uncertainty: robust PERT
scheduling

In this section we specialize the general two-

stage robust LP decision model investigated above

to robust PERT scheduling, with an uncertainty

set D on the durations of the tasks, supposed to
be given as a (finite or infinite) list of ‘scenar-
ios’. More precisely, we want to determine an
earliest termination date which can be achieved
for any realization of the task durations d in a
given uncertainty set D.

5.1 Formulation as a 2-stage robust
LP model

Consider a PERT network represented as a di-
rected circuitless graph N in which the nodes
correspond to tasks (the tasks are numbered ¢ =
1,2, ..n, the set of tasks is denoted /), and there
is an arc (i, j) with length (duration) d; when-
ever there is a precedence constraint stating that
processing of task j should not start before com-
pletion of task 7. The set of arcs is denoted U.
We assume that node 1 has no immediate pre-
decessor (it thus represents the initial task) and
node n has no direct successor (it thus repre-
sents the terminal task of the project). Denot-
ing y;(j = 1, ..n) the starting date for each task
J, and assuming first that the task durations d;
are exactly known, we want to minimize the to-
tal duration of the project while satisfying all
precedence constraints, in other words:
Maximize —y,
S.t:
0

U1
Yi — Y5

Indeed, it is easy to check that in the above,
y1 = 0 can be replaced by y; > 0, or equiva-
lently —y; < 0, thus the problem can be rewrit-
ten:

Maximize —y,
s.t:
-y <0
vi—y; <—di,V(,j)eU



This model is recognized as a special case
of (I), the constraint matrix [F, G] being formed
by the transpose of the node-arc incidence ma-
trix of NV with an additional row involving vari-
able y; only (with associated coefficient -1). F'
is reduced in this case to a single column (the
column corresponding to node 7 in the trans-
pose of the incidence matrix of V). The right
handside vector b is the vector with coefficients
equal to the opposite of the task durations (more
specifically, the right handside coefficient for
the constraint corresponding to arc (i,5) € U
is equal to —d;). Note that we do not state ex-
plicitly the nonnegativity conditions on vy, since
they are implied by the precedence constraints
and nonnegativity of the d; coefficients.

Thus the problem is cast in a form very sim-
ilar to (I) the only difference being that the non-
negativity conditions on y and z are dropped.
The consequence of this on the analysis of 3.2
is just that we have to consider the polyhedral
cone O" = {u/u’G = 0 and u > 0} instead of
the polyhedral cone: C' = {u/u’G > 0 and u >
0.}

Due to the special structure of the G ma-
trix arising in the PERT scheduling problem,
we have the following result:

Proposition 1: The extreme rays of the poly-
hedral cone C’ are in 1-1 correspondence with
the characteristic vectors of the various paths
between node 1 and node n in N.

Proof: By observing that G is the node-
arc incidence matrix of the graph NV without the
row associated with node n but with an extra
column with coefficient -1 in the first row and
all other coefficients 0, it is realized that v sat-
isfying GTu = 0 and u > 0 corresponds to a
nonnegative flow between node 1 and node n in
N with value equal to u; ;, the component of u
corresponding to the extra column with coeffi-
cient -1 in the first row and all other coefficients
0. Therefore the extreme rays of the cone C’

correspond to the incidence vectors of the vari-
ous paths connecting node 1 to node nin N. m

Let us denote P = {r!, 72, ..., 7%} the set
of all paths between 1 and nin N, u!, u?, ..., u®
the corresponding characteristic vectors, the con-
dition (u*)T (b—Fy) > 0 specializes to: — Z d;+

iemk
Y, > 0 (this is because, in that case: (u")'b =
- Z d; and (u*)'Fy = —v,). So the con-
ierk
dition for feasibility is that for each path 7" :

Yn Ei Z{: di

ienk
In view of this, the robust PERT scheduling
problem can be reformulated as:

max —Y,

S.t:
Yo =Y di,Vr* € PVd €D

iemk

where we recall that D denotes the uncertainty
set for the task durations.

This problem therefore reduces to determin-
ing the path 7% maximizing, over the set P of
all possible paths in NV, the objective function:

gleag{z d;}

ienk

in other words we want to solve:

wasnas() i} (RPS)
(’Robust Pert Scheduling’ problem)

Now, if we want to go further into the anal-
ysis of (RPS), we have to specify how the un-
certainty set D is defined. Of course there are
many possible ways for this; we content our-
selves below to examine two among the most
natural possible definitions, and show that, for
each of them, the above robust optimization prob-
lem (RPS) can be efficiently solved .



Case 1: D is a scaled ball w.r.t. the L.,
norm.

The first easy special case is when, for each
task ¢, the duration d; can take any value in a
given real interval [d; ,d] with 0 < d; <
d;. In this case D is the cartesian product:
[dy,di] x [dy,ds] x ... x [d,d]], which may
be viewed as a scaled ball w.r.t. the L., norm
(using component-wise scaling to have all in-
tervals of equal width). It is easily seen that an
optimal robust solution for problem (RPS) can
be obtained in this case by looking at a longest
path (critical path) in /N when each of the tasks
i is assigned the longest possible duration d .

As an illustration of the above, consider the
following example with n = 7 tasks, where
the graph of precedence constraints has the fol-
lowing arcs: (1,2), (1,3), (2,3), (2,5), (2,6),
(3,4), (3,7), (4,5), (5,7) and (6, 7). Thus task
2 cannot be started before completion of task 1,
etc. Also note that the tasks are numbered ac-
cording to a topological ordering of the graph,
since there is no arc (7, j) with i > j. The asso-
ciated intervals [d; , d;"] for the durations of the

1

tasks are the following:

Task 1 | Task2 | Task3 | Task4 | Task5
(2, 4] [4,8] (3, 6] [4,8] [4,8]

Task 6
[8,16]

Task 7 is not shown in the above table because
it is a dummy task (of duration 0, without un-
certainty) representing the end of the schedule.
It is easy to see that in this example, the optimal
solution to the (RPS) problem has duration 34

and corresponds to the critical path (1,2,3,4,5,7).

Indeed 34 is the earliest achievable termination
date if we require that the schedule remains fea-
sible for any possible choice of the task dura-

tions in the cartesian product [d; , d | x[d; , d ] X

... X |dg , dg]. This corresponds to the situation
where the duration of each task i is d;".

Case 2: D is a scaled Hamming ball of
bounded radius T'.

Here again we assume that, for each task i,
the duration d; can take any value in a given

real interval [d;,d; + A;] with d; > 0. d; is
called the nominal value of the duration for task
1, d; + A; being the possible extreme (or worst-
case) value for the task duration. As is actu-
ally the case in many practical applications, it
is unlikely that all tasks simultaneously take on
worst-case values. To take this observation into
account, we will impose an upper bound I' on
the number of task durations which are allowed
to take on a worst-case value, given that all task
durations which do not take on a worst-case
value are assumed to be equal to their nomi-
nal value. More formally, associating with each
task 7 a 0-1 integer variable u; , the uncertainty
set D corresponding to this definition is:

D={0= (9>i:1,...,n/9z‘ =di+Au(i =1,...,n)

such that: Zuz <T,u; €{0,1},Vi}.

As can belséen from the above definition, in
the special case where all A; are equal to 1, D
is recognized as the Hamming ball of radius I
centered at d = (d;),7 = 1,..n (in other words,
6 — d can be any 0-1 vector with at most I
components equal to 1). When the A;’s take
on arbitrary positive values, the Hamming ball
structure is still present after applying scaling
to each component ¢ with respect to the corre-
sponding A; value.

We note here that, in spite of the fact that
the definition above is close in spirit to the con-
cept of uncertainty suggested by Bertsimas and
Sim (2003, 2004), our model is fairly differ-
ent from the one studied by these authors, since
they restrict themselves to rowwise uncertainty,
whereas in our robust PERT scheduling prob-
lem, we have uncertainty on the RHS only (a
special case of columnwise uncertainty). For
more detailed discussion of this issue, see 4.2
below.

‘We now show that, with the above definition
of the uncertainty set [, problem (RPS) can be



efficiently solved via a dynamic programming
recursion. To that aim, we will consider the
problem with parameter I' as only one represen-
tative of the class of problems (RPS[i, k) for i
running from 1 to n (the number of tasks) and
k running from O to I". More precisely, assum-
ing that the tasks are numbered according to a
topological ordering of the circuitless graph N,
(RPS]i, k]) consists of the robust PERT schedul-
ing subproblem corresponding to the subset of
tasks 1, 2,...,4, the durations of at most £ of
which are allowed to take on their worst-case
values. The case k=0 (no deviation allowed)
corresponds to the usual PERT scheduling prob-
lem in terms of the nominal values for the task
durations. We denote v*[i, k| the optimal objec-
tive function value for problem (RPS[¢, k|), and
for any task i, we denote Pred|i] the set of tasks
j such that (j,¢) is an arc of N (the set of direct
predecessors of node 7). Bellman’s optimality
principle then leads to the following dynamic
programming recursion:

Vi e [1,n],¥k = 0,1,..
v* i, k]

I

a ax{v*|j, k| + d;;
e (0[], K]+,

Vg k— 1]+ d; + A}

3)
The optimal value of the robust PERT schedul-

ing problem we are interested in is then: v*[n, T'].

The rationale behind Eq. (3) can easily be ex-
plained as follows. Consider the set of all paths
from 1 to j € Pred[i]. The duration of arc
(4, 1) has nominal value d; and worst-case value
d; + A;. The maximum duration of a path from
1 to 7 through j with at most £ tasks allowed
to deviate from their nominal values can be ob-
tained: either by allowing for at most k devia-
tions on the subset of tasks {1,2,..5} and tak-
ing the nominal duration for arc (j,4); or by
allowing at most £ — 1 deviations on the sub-
set of tasks {1, 2, ..j} and taking the worst-case
duration for arc (j,4). Thus the optimal value
for node 7 via node j is the maximum value
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among these two alternatives, and the optimal
value for node ¢ is the maximum taken on the
set of all direct predecessors of ¢. Obviously,
solving the recursion (3) is achieved in poly-
nomial time O(m X n), where m is the num-
ber of arcs and n the number of nodes of the
PERT network; more precisely the complexity
is O(m x I') where T', the parameter defining
the uncertainty set, is at most n, the number of
tasks (but often significantly smaller than n in
practical applications).

Let us illustrate the above on the same 7
task example as the one considered to illustrate
case 1. We thus consider the same intervals for
the task durations, the lower bound of each in-
terval representing the nominal task duration,
and the upper bound representing the worst-case
duration. For I' = 3, application of the recur-
sion (3) leads to the v*[i, k| values shown in the
following table.

2 1i=3
6
10
12

12

1 =4
9
13
16
18

=295
13
17
21
24

1 =06
6
10
12
12

1 =7
17
22
26
29

7
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For instance the value v*[4, 2] = 16 corresponds
to the path (1, 2, 3, 4) with 3 arcs of nominal du-
rations 2, 4 and 3 respectively. If, in this path,
two arcs out of three are allowed to take on their
worst-case durations, the worst case (Max) is
obtained when task 2 has duration 8 and task 3
has duration 6 (task 1 keeping its nominal du-
ration 2), the resulting length of the path being:
8+ 6+ 2 =16. Let us also illustrate how the
recursion (3) works for computing e.g. v*[7, 2]
and v*[7, 3]. We have:

v*[7,2] = max{v*[3,2] + 3;v"[3, 1] + 6;
v[5,2] + 4307 [5,2] + 43 v*[5, 1] + §;
v*[6,2] + 8 v*[6,1] + 16}
— max{15, 16, 25, 25, 20, 26} = 26.

The maximum above is obtained for j = 6 and
the corresponding optimal path is (1, 2,6, 7).



Similarly we have:

v*[7,3] = max{v*[3,3] + 3;v"[3,2] + 6;
v*[5, 3] + 4;v*[5,2] + §;
v*[6, 3] + 8;v*[6,2] + 16}

= max{15, 18, 28,29, 20, 28} = 29.

The maximum above is obtained for j = 5 and
the corresponding optimal path is (1,2, 3,4, 5,7).

It is thus seen that, depending on the choice
of the control parameter I, various optimal paths
are obtained which, of course, may differ from
the optimal solution to the non-robust PERT sche-
duling problem (considering only the nominal
values for the task durations). Also, observe
that the value v*[7,3] = 29 corresponds to a
less conservative robust situation as compared
with the one obtained in case 1 above.

5.2 Differences with Bertsimas and
Sim’s approach

We now turn to show that, in spite of the sim-
ilarity in the definition of the uncertainty sets,
the robust version of the PERT scheduling prob-
lem investigated here is essentially different from
the model proposed by Bertsimas and Sim [3]
for the robust version of the shortest path prob-
lem. From an abstract point-of-view, the differ-
ence basically stems from the fact that, in our
case, we are faced with a LP problem with un-
certainty on the right handside, whereas Bertsi-
mas and Sim address a LP problem with uncer-
tainty on the cost coefficients. However, to fur-
ther understand the source of this difference, we
show below which difficulties would arise if we
wanted to apply the Bertsimas-Sim approach to
the robust longest (critical) path problem on a

directed circuitless graph G.

Following these authors, the robust shortest
s-t path problem in G with uncertainty parame-
ter I' (assuming [' € N) is formulated as:

DIRRNRETRY

(RSP) 1Iﬂrg}r}{ Z cijTi  +
(i,5)€S

(4,5)eU

max
SCU,[S|<r
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where X denotes the set of incidence vectors

of all s-t paths in G; ¢;; denotes the nominal
cost of arc (¢, j) and ¢; j + A, ; is the worst-case
cost of arc (4, j). After transformation of (RSP)
using the duality theorem to convert the second
term in the brackets into a minimization, the
problem is reformulated as a standard LP , the
solution of which reduces to m + 1 aplications
of a standard shortest path algorithm. Observe
that one of the reasons for all the above to work
so nicely is that the second term in the brack-
ets, as a function of z, is convex in x , since it
is the pointwise maximum of a finite number of
linear functions.

The above approach is still valid if, instead
of looking for an optimum robust minimum cost
path, we were looking for an optimum robust
maximum benefit path: ¢;; > 0 being inter-
preted as a reward associated with the use of arc
(i,7), the effect of uncertainty being to reduce
the nominal reward c; ; by the amount A, ;. The
problem would then take the form:

max{ E , CijTij — E , A it
zeX

(i,5)eU (i,5)es

which is essentially analogous to the above ro-
bust minimum cost path, up to a change in the
signs of the coefficients in the objective (still as-
suming, of course, that the graph GG under con-
sideration is circuitless). In particular, we note
that the function to be maximized is concave,
so we still have a convex optimization problem.

By contrast, the robust PERT scheduling prob-
lem addressed in the present paper is formu-

lated as:
max c; +  max A
{ Z g iy SCU,|S|<T Z

zeX
(i,5)eU (i,5)€S
(with Cij > 0 and Ai,j > 0).

It is then readily observed that this problem
consists in maximizing a convex function of z
on {0,1}™, and it is well-known that this can-
not be simply reduced to ordinary linear pro-
gramming as is the case for Bertsimas and Sim’s

max
SCU,|S|<T

ijTig}



approach. Thus robust PERT scheduling may
be viewed a typical illustration of the big dif-
ferences between models featuring rowwise un-
certainty and models featuring columnwise un-
certainty in robust Linear Programming.

6 Conclusions

In this paper, various Robust Linear Program-
ming problems have been investigated, and the
question of whether LP duality can still be used
to help in solving such problems has been ad-
dressed and answered negatively. Among the
problems considered, Robust Linear Program-

ming problems with uncertainty in the right hand-

sides only, have been recognized as an interest-
ing sub-class of problems, for which the solu-
tion techniques should not confine themselves
to the classical approach proposed by Soyster
(1979). In this respect we have been lead to
propose a new class of robust LP models re-
ferred to here as "Two-Stage Robust Decision
Models’ which can be expected to lead to less

"conservative’ optimal robust solutions than those

usually obtained from Soyster’s model. In or-
der to show the practical usefulness of this 2-
Stage model, a specialization to robust PERT
scheduling has been discussed, leading , under
two natural ways of defining the uncertainty set
w.r.t. the task durations, to efficient solution
methods. Also some fundamental difference
between our approach to robust PERT schedul-
ing and the one proposed by Bertsimas and Sim
[3] in the context of the robust shortest path
problem has been pointed out. We think that
many other possible applications of this 2-Stage
robust modeling approach would deserve fur-
ther investigations, for instance in dynamic in-
ventory management, optimal resource alloca-

tion problems, telecommunication problems, etc.
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