Uniform Law on the Unit Sphere of a Banach Space

by Bernard Beauzamy

Société de Calcul Mathématique SA
111 Faubourg Saint Honoré

75008 Paris — France

September 2008

Abstract

We investigate the construction of a uniform probability law on the unit sphere of a fi-
nite-dimensional, real, rearrangement-invariant Banach space. We show that this con-
struction is possible under a geometrical condition, and it comes from a probability on
R : there is a density f, on R, such that if X,,..., X, are independent variables follow-

. . (Xl,...,XK) .
this law, the 1 f —
ing this law, the law o H(Xl,---,XK)H 1

s the uniform law on the unit sphere of R¥,

equipped with this norm.

I. Introduction

For practical purposes, one may want to generate a sample of points on the unit sphere
of a Banach space. Here are two examples :

— Choosing a direction at random is useful for the search of solutions of PDE’s : one
starts at a given point and then moves to some direction. In this case, the norm is
usually the Euclidean norm. See the acknowledgements at the end of the paper
for our original motivation, in the framework of two contracts with IRSN
(France).

— Choosing a proportion at random is useful, for instance in economics : a budget
may depend on some goods, and one wants to study the variations of the budget,
depending on various weights on the goods. In this case, the norm is usually the
sum of absolute values of the coefficients, that is the |, norm.

In all cases, one deals with a finite-dimensional real Banach space, that is the space
R equipped with some norm.

In general, one does not have any predefined wish or preference about the points which

must be chosen : they need to be on the unit sphere, but no direction is privileged. This
means that the law we want for our sample is the uniform law on the unit sphere.
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Our final observation, about the motives, is that usually one wants to use a law on the
real numbers (building a law directly on the unit sphere of a Banach space is very com-
plicated) : one wants some density function f , on the real numbers, such that if we draw

a sample X,,..., X, using this law, and then normalize it correctly, that is replace it by
(x XK )

H o

H then the corresponding points on the unit sphere will follow a uniform

II. A preliminary negative remark

First, we observe that such a law cannot be obtained from a uniform law on each compo-
nent separately.

Indeed, take the Euclidean norm. First draw a sample for a random vector (X...,Xc);

each X, following a uniform law, for instance on the interval [0,1], and then normalize,

Y = X , so that z y; =1.
«/ZX -

The vector (yl,..., yK) is indeed on the unit sphere of |,, but does not follow a uniform

that is replace each X, by :

law. Let us see this on a very simple example, in dimension 2.

We take two random numbers X, and X, with uniform law between 0 and 1. This means

that we have a uniform law in the unit square [0,1]2. For each X, and X,, we consider

the normalized vector :

X X,
V== V=
S T e

The law of this vector has density :

f0<o<Z, (9= 12
4 2c0s”(0)

it Z<o<Z, 1(6)= _12
4 2 2sin“(0)

This is quite different from a uniform law.

This remark is quite general : a uniform law in the square does not project to a uniform
law on the unit sphere, no matter what the norm is.
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III. Uniform law on a sphere

What we mean here by “uniform law” means “uniform with respect to Lebesgue meas-
ure”. It means that the probability to fall in some set depends only on the Lebesgue
measure of this set, and not on the position on the set on the unit sphere.

Since Lebesgue measure is invariant under permutation of the coordinates, we investi-
gate only norms which have the same property. More precisely, we assume that our Ba-

nach space is equipped with a norm || . || which satisfies :

b

H(Xaa)’"-’ Xa(K))H = (%0 %)

for any permutation o of the set {l, - K} . This is also necessary since we want our law

to derive from a law on the real numbers : we draw a sample and then normalize. This
implies that all coordinates have the same law.

Let h(X,...,Xc) be the density of probability we want to build. Then, the fact that we
have a uniform law in a rearrangement-invariant space means that this function h will

be constant on its domain of definition : h(X,...,X,) does not depend on (X,,...,X,), pro-

vided ||(X1, ey XK)” =1. This is the fundamental property we will use.

We now show how to build a uniform distribution on the unit sphere, starting from a
probability density on the real line. We observe that it is enough to construct our proba-

bility density for positive variables. Indeed, there are 2 sets of equal measure, depend-
ing on the sign of each X, , and the construction of the density in one of them transfers to

all the others.

The general construction we give is inspired (with corrections) by the one given in the
book by Luc Devroye [2], chapter 5, theorem 2.2, for the |, norm.

Let:

-~

C ={ (%2 )3 X 209K, (000, )| =1

be the positive part of the unit sphere.

We need to introduce a restriction for the norm, which is of geometrical nature. In order
to explicit this condition, we investigate the condition :

|06 X1 X )| < 1)
for given S;X,..., Xc_;, that is as a condition on X, alone.

First, we observe that (1) may never be satisfied, if S is too small or X,..., X, too large.

Let:
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A‘}<71(S)={(X1,...,XK71);E|XK ,H(xl,...,xK)Hgs}
be the set on which (1) can be satisfied.

If there is a point X, for which (1) holds, then there is a unique X, with
(%0 X1 % )| =5
We denote this point by ¢(S D AR XK_l) . In other words,

P(5 50X 1) =M X 00 X X ) < 8

and we have
X S@(S5 %o Xy

if X, =0 satisfies :

|06 X1 X || <5

For instance, for the Euclidean norm,

and

Ac4(s)= {(Xi,..., XK_l) X4 X2, < Sz}

1s the ball of radius S in the Euclidean K —1 dimensional space.

We can now state our result :

Theorem. - Let || || be a norm on R", invariant under permutation of the variables.

Then, there is a probability density on R such that, if X,,...,X, are independent va-

riables followin, ] M
g this law, the law of H(X ” )
1o X

H is the uniform law on the unit sphere

of R®, equipped with this norm, if and only if the values of 2—(/)(5 ; Z) depend only on the
X

values of X, and of qo(s ; Z). In other words, the answer is positive if and only if there is a

function G such that :

2_;/;(5 12)=6(x,0(s:2))
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Proof of the Theorem.

We set :
S =[( Xy Xy )|
This is a positive random variable. We also define :
Z=(Xpn X)) 2= (Koo Xy ) -

Let f,.(z,s) be the density of the joint law of the K —uple (Z, S). This density can be

computed as a conditional probability, knowing Z , that is :
fz,s (z,8)= fS|Z(S)X f,(2) 3)

where f ,(S) denotes the conditional probability density of S knowing Z and f,(z) is
the density of Z .

The proof of the Theorem will be divided into three steps.

Step 1
Under the above assumption, the density f, (z,8) is independent of Z=(X,...,X¢_,) -
So we are looking for an identity of the following form :
fs2 (8)x f,(2) =c(s) (4)
where the right-hand side is independent of z = (X, ..., Xc_;) -
We have, since the variables X,,..., X, are independent :
f2(2) = T (x)x-x F(xc,)
and
Foi2(8) = P{J( X X | S 81X = Koo X4 = X1
that is :

=P {0 )|

This probability is entirely determined by the law on X, , since the norm is known and

the values of X,..., X, , are fixed.
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The condition :
(%% X ) <5

is equivalent to the fact that X, isin the interval :

0< Xy <0(S; X X 1) »
by definition of the function ¢, provided that (Xv . XKfl) e A ,(s).
For instance, for the Euclidean norm, the condition

(%% X ) <5

1s equivalent to :
2 2 2 1/2
0< X, s(s - X —...—xK_l)
provided that :
X2+ X2, <87

Let f be the density of probability we are looking for. The identity (4) is equivalent to :
f (gp(s Xy oo X1 ) )X F ()% x B (X)) =¢(S) (5)
is independent of (X,...,X,_;), provided that (X,,... X )€ Ac4(S).

Since all variables are equivalent, it is enough to ensure this for X,. Computing the de-

rivative with respect to this variable, we get :

f'(p(s; xl,...,xK_l))Z—Z(s Xy ooy Xy )% B ()% (X y) +

+ F (@50 X g ))x F/00) % T () x-x (%, ;) =0

that is,
, 0 '
t'(o(s; Xy---vxm))i(s X X)X FOQ) ==F (0(55 X X q))x /(%) ()
This can be written :
fle(siz)) 1 f'(x) -
. 0 f
flo(si2)) 925,y T
X
We are looking for a density function f satisfying equation (7). Set :
6
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£'(x)
f(x)

9(x) =

This is the logarithmic derivative of the function f . From the identity (7), we deduce :

1
—=—09(x) (8
% s;2)
ox,

g(p(s;2))=

In order to understand what this equation means, let us come back for a while to the
case of the Euclidean norm. In this case, we have :

¢ _ X

%, _\/32 D I

and the identity (8) becomes :

2_y2_ 2 2 :\/S — X T X 9
g((s X == X5 ) ) " g(%,) ©)

Taking X, =1, X, =---=X., =0, we get, for s>1:

g ((s2 —1)1/2) =cysi—-1
for some constant ¢. This means, for all u>0:
g(u)=cu

which gives

2

u
Log|f|=c—
og|| 02

and :

u2
f(u):exp(c?}

Now, the value of C is determined by normalization : the integral of f must be 1, and
we find :

2

f(u)zexp[—ﬂ:j J,for ux=0.
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The same argument holds in general. The identity (8) allows the construction of the
function Q: fix any value for X, for instance X, =1. Let C be the unknown value of

g(x). Fix u>0 and find s,X,,...,Xc,; such that ¢(s;LX,,..., X ,)=U (this is always
possible) : then the identity (8) defines g(u).

From the definition of ¢, one deduces f, up to a multiplicative constant, which is com-
puted by normalization (the integral of f must be 1). This concludes our construction.

However, there is a compatibility condition ; the identity :

must give the same value to g when the value of ¢(S,z) is fixed. This means that the

value of the derivative Z—(D(S ; Z) , for fixed X , must depend only on the value of (p(s ; Z) .
X

In other words, there must exist a function G such that :

2—Z(S;Z)=G(Xy¢(siz)) (10)

This is the case for the Euclidean norm, since :

and the same holds for all the |p norms, 1< p<+o0.

We note that condition (10) does not need to be satisfied for any norm on the space R¥.

Indeed, a norm on R" is defined by a symmetric convex body in this space (see for in-
stance B. Beauzamy [1]), and condition (10) means that the value of the derivative

op
%

geometrically, in 3 dimensions :

(S ; Z) , for fixed X, depends only on the value of go(S ; Z) . Let us see what this means

Bernard Beauzamy : Uniform law on the unit sphere, July 2008



/)

v
>
N

X

Figure : slopes of the tangent to the unit sphere at two different points

On this picture, the two points A and B have the same value for the first coordinate X,
and the same value for ¢(1; X, X2) , which is the length AC = BD. But the tangent to the

unit sphere does not need to be have the same slopein C andin D.
This concludes Step 1 of the proof.

Step 2

We just showed that f, (z,5) was independent of Z=(X,,...,Xc ), for Z in the set

Ac4(8)-

Let U =[%,...,%j and let f, (u,s) be the joint density of (U,S) ; this density is

independent of U, in the set A, (1), since :

fu,s (U1S) = fz,s (US,S),
for all s>0.

The density of U itself can be obtained, integrating with respect to S that is:
f,(u)= j f, s (u,s)ds (11)
0

and we see that this value is constant on the whole set A, (1) .

Bernard Beauzamy : Uniform law on the unit sphere, July 2008



XKfl

) ) X ) ) .
But now, since the density of ?1 - 1s constant, so is the density of

XK o1 2 ) e ) )
S S S S S S S

This concludes the proof of the Theorem.

Corollaries.

We now show how this general result applies to specific norms :

a) The case of the Euclidean norm

This case has been treated along with the proof of the Theorem. We obtain :

Theorem 2. -Let K>1 and let X,,..., X, be independent normal variables (mean 0, va-
riance 1). Then the vector :
xl XK
\/X12+---+ X2 ’ ’\/Xf+---+ Xz

follows a uniform law on the unit sphere of the K —dimensional Euclidean space.

In other words, in order to obtain a uniform law on the sphere, one should not start with
uniform variables, but with Gaussian.

A proof of this result can be found in the book by R. J. Muirhead [3], p. 37 (communi-

cated by Paul Deheuvels). This proof uses the fact that the normal law on R" is inva-
riant under all orthogonal transformations of the space into itself. So, its projection upon
the unit sphere is itself invariant under the projections of the transformations. The unit
sphere is a locally compact group for these transformations, and a general result says
that there is only one invariant Haar measure, which must be the uniform law.

b) The case of the |, norm

This is treated in the book by Luc Devroye [2] ; we get :

Theorem 3. -Let K =1 and let X,,..., X be independent variables following an exponen-

tial law. Then the vector :

Xl XK
X+ XX e X

follows a uniform law on the positive part of the unit sphere of the K —dimensional |,

space.

10
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¢) The case of the |p norms, 1< p<oo

This is a generalization of the previous ones. The case p =0 is obvious (this is just the
uniform law in the unit ball). For the case 1< p <+o0, we get :

Theorem 4. -Let K >1 and let X,,..., X, be independent variables following a law with
density exp{—tp} t>0. Then the vector :

Xl XK
(le+---+ X,E)llp ’“.’(Xf’+---+ X,E)

1/p

follows a uniform law on the positive part of the unit sphere of the K —dimensional |p

space.

Proof of Theorem 4.

We indicate briefly how this density is obtained. In this case, we have :
1/p

P(S5 Xprers X 1) :(sp —xP —...—xﬁ_l)

We have :

op _ _(ﬁj
0%, ®

so condition (10) is satisfied.

The identity (8) becomes :

PoxP——x2 )
g((s"—&"—---—Xé’_J”p): 7% ) g(x) (13)

Taking X, =1, X, =---=X., =0, we get, for s>1:

g((sp —1)1/p) =c(s"-1)”
for some constant ¢. This means, for all u>0:
g(u)=cu™

which gives
p
Log|f|=c 4
p

11
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and :
p
f(u) =exp(cu—].
P

The value of € should be determined by normalization ; of course ¢ <0, but we may just
as well take :

f (u) =exp(-uP), for u=0,

1
since we divide at the end by the quantity (le et Xf) " This concludes the proof of

Theorem 4.
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