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Abstract 

 

We collect a sample : distinct values 1,..., Kx x , repeated respectively 1,..., Kn n  times. Let 

1 KN n n   be the size of the sample. Let  1,..., Kp p  be the (unknown) probability of 

each value ; one usually uses the estimate k
k

n
p

N
 which is correct only asymptotically. 

Here, we introduce a probability law on the the K uple  1,..., Kp p  (not just an esti-

mate, but a whole probability law). We study the marginal laws for each kp and we show 

that the global variance of this probability law is a good indicator whether the sample is 

sufficient or not. 
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I. Introduction 

 

We consider the following question: we collect a sample (from a physical experiment, or a 

computational code, or from polls), and we want to know if this sample is "sufficient" or 

not. The word "sufficient" requires clarification. Roughly speaking, it means: does the 

sample give a correct idea of the "real" probability law behind the experiment? Or, more 

precisely, if we collected a sample which would be 10 times bigger, or 100 times bigger, 

and so on, would it give significantly different information? 

 

In practice, this question is of considerable importance, for two reasons: 

 

− If the sample is recognized as "insufficient", not to take wrong decisions ; 

 

− Reduce, if possible, the time needed to acquire a "sufficient" sample, which is usually 

costly. 

 

As an example of the first type, we may mention all questions connected to the warranty 

on industrial products. For instance, the warranty on a car (say 3 years) may be too long, 

or too short, if the sample upon which it is based is insufficient. 

 

As an example of the second type, we may mention a contract we had with the French 

"Institut de Radioprotection et de Sûreté Nucléaire" : it dealt with the improvement of 

nuclear measurements. But these measurements require neutron counting, which takes 

time ; so the question is when to stop ? (see [IRSN-SCM] for a published description of 

this work). 

To decide whether a sample is sufficient or not is not the same as reconstructing missing 

data, as we did in [BBOZ]. In the reconstruction of missing data, we have some know-

ledge of the underlying probability law, and, when a sample is insufficient, precisely we 

do not have this knowledge. 

 

II. Two different situations : static and dynamical 

 

There are obviously two different situations : either the sample is given to you at once, as 

a big database, with no information on how it was collected, or you see it growing (or, 

which is the same, you have an information about the date when each data was col-

lected). We call the first situation "static" and the second one "dynamical". Note that 

there may be intermediate situations : one sample, made for example of a static database 

and of a dynamical database. But in this case we consider the whole sample as static. 

 

 

III. Some terminology 

 

Before we enter the discussion, let us give some terminology. We call a "class" a possible 

value for the results. For instance, if you measure the heights of people between 1.5 and 

2 meters, with precision 0.1 m, you have 5 classes, namely 1.5 - 1.6, 1.6 - 1.7, 1.7 - 1.8, 

1.8 - 1.9, 1.9 - 2.  

 

So, the number of classes depends : 
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 On the range of the measurement (here the range is 1.5 - 2), which usually de-

pends on what you want to measure and for what reason (this is "expert know-

ledge") ; 

 

 On the precision of the measurement. This precision depends itself on the preci-

sion of the measurement device, but also on the objectives of your measurement. 

For instance, if you simply want to establish correlations between food and 

height, a precision of 0.1 m might be enough, but if you are a tailor, you might 

want a precision of 1 cm or even below. 

 

Mathematically, and in terms of computer implementation, a "class" is usually an inter-

val of the type a x b  , but this has no importance here. To a class we attribute a "val-

ue", which is usually the center of the interval. This choice, also, has no importance here.  

 

Simply speaking, we may consider our sample as a list of distinct values 
1,..., Kx x  (so K  

is the number of observed classes) with 
1,..., Kn n  being the number of repetitions for each 

value 1,..., Kx x  respectively. Let 1 KN n n   : this is the size of the sample. 

 

Let us observe that there are situations where the number of possible classes is un-

known, or has only a useless upper bound. For instance, if you sell a new device, and 

want to know the number of failures in a given year, the only bound you know is the to-

tal number of devices sold (but of course you expect that not all of them will break 

down!). 

 

If you go to a new region, where you have never been, and ask the question : what is the 

law of probability for the number of cows in a farm, you have no a priori idea of the poss-

ible range (can it be 1 000 ? or 10 000 ? or more ?). 

 

In the static situation, all you know is a list of values ; you know nothing about the way 

they have been obtained.  

 

The tool we now describe allows us to build a probability law from the sample, giving in 

particular a confidence interval for the probability of each value : if this confidence inter-

val is narrow for most values, this is satisfactory.  

 

This gives a very complete description of the information contained in the sample, in-

cluding the uncertainties about it. 

 

IV. The static situation 

 

We want to evaluate the "true" probability kp  of each value kx , 1,...,k K . This "true" 

probability is unknown: we have only the estimate observed on the sample. So kp  should 

itself be treated as a random variable, of which we want to find the law. 

 

A classical estimate is: 

 

k
k

n
p

N
  

 

However, this estimate is correct only asymptotically that is when N  : this is the 

empirical law of large numbers. A correct estimate, valid for all N , is: 
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1k

k

n
p

N K





, 

as we will see below. 

 

But in fact, the general theory presented in [BB1], Chapter 14, §9 (multinomial case) 

gives more than estimates for each 
kp . Indeed, one can build a density function for the 

K uple 
1,..., Kp p . This density function is : 

 

 1

1 1( ,..., ) Kn n

K Kf p p c p p                                               (1) 

 

where 1,..., Kp p  satisfy 0kp   for all k , 1 1Kp p   , and c  is a normalization cons-

tant (so that the integral of f  is 1). 

 

Let us explain the meaning of this formula. In our sample, the value 
1x  has been ob-

served 1n  times and we would like to estimate the probability 1p  of this value. This 

probability is unknown, so, as we said, it should be treated as a random variable. Formu-

la (1) gives the density of this random variable, or, more exactly, the joint density of the 

K uple 1,..., Kp p  of random variables.  

 

The normalization constant c  can be easily computed ([BB1], Chapter 14, §9) ; its value 

is : 

 

1

1

( ,..., )K

c
I n n

  

 

with : 

 

1
1

! !
( ,..., )

( 1)!

K
K

n n
I n n

N K


 
, where  1 KN n n   . 

 

 

So we have a very explicit situation : the sample gives birth to a probability law on the 

probabilities of each value, and the amount of information will be derived from this 

probability law. For instance, we will derive a probability law for 1p  and the more con-

centrated this probability law is, the more certain 1p  is. If this probability law for 1p  

was a Dirac, say for instance at 0.1, this would mean that 1p  is certainly equal to 0.1.  

 

If this was true for all kp , we would be sure that our sample characterizes completely 

the experiment : the sample would be perfect. So we see that, for any sample, the concen-

tration of the law 1( ,..., )Kf p p  characterizes correctly the amount of information in the 

sample. 

 

We first compute explicitly the marginal law of any of the kp 's. 
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1. Computing the marginal law for 
1p  

 

We have, by definition :  

 
1

1
1

1

( ,..., )
( ,..., )

Kn n

K
K

K

p p
f p p

I n n
 ,  

10 ,..., 1Kp p  , 
1 1Kp p    

 

with : 

 

1
1

! !
( ,..., )

( 1)!

K
K

n n
I n n

N K


 
, and 1 KN n n   . 

 

We define, for any positive integers ,a b  : 

 

,

(1 )
( )

( , )

a b

a b

x x
f x

I a b


  

 

with as before : 

 

! !
( , )

( 1)!

a b
I a b

a b


 
 

 

We recall that each function ,a bf  is a density function : see [BB1], Chapter 14. 

 

Then we have : 

 

 

Proposition 1. – The marginal law of each kp  is the density , 2k kn N n Kf    . 

 

Proof of Proposition 1. 

 

We give it for 1p in order to simplify the notation ; it is identical for the others. We com-

pute : 

 

 
1 2

1 1

1 ...

1 1 1 1 1 1

0

1 ...
K

KK

p p
nn n

K K KI p p p p dp




  

       

 

(the normalization constants will be considered at the end) 

 

We have : 

 

 
1 2

1 2 1

1 ...

1 1 2 1 1 1 1

0

1 ...
K

KK K

p p
nn n n

K K K KI p p p p p dp


 

  

        

 

Set   1 1 21 ...K Kp t p p      with 0 1t  . Then : 
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  11 2 1

1
1

1 1 2 1 2

0

1 ... (1 )K KK K K
n nn n n n

K KI p p p p t t dt 
 

       

 

and thus, up to some normalization constant :  

 

  11 2
1

1 1 2 1 21 ... K KK
n nn n

K KI p p p p 
 

      

 

Next :  

 

 
1 3

11 2

1 ...
1

2 1 2 1 2 3

0

1 ...
K

K KK

p p
n nn n

K K KI p p p p dp




  
 

       

 

The same computation gives :  

 

  2 131
2

2 1 3 1 31 ... K K KK
n n nnn

K KI p p p p  
  

      

 

and more generally :  

 

 11
...

1 1 1 11 ...
K j KK j

n n jnn

j K j K jI p p p p
 
  

        

 

The marginal law is obtained for  1 1K j   , that is 2j K  . We find the law : 

 

   2 11 1
... 2 2

1 1 1 1 1( ) 1 1Kn n K N n Kn nf p p p p p
      

     

 

Let us now take care about the normalization. Recall that if : 

 
1

,

0

(1 )a b

a bI x x dx  , 

 

where ,a b  are positive integers, then : 

 

! !
( , )

( 1)!

a b
I a b

a b


 
. 

 

([BB1], Chapter 14, §5, Lemma 2). This gives the final formula : 

 

 

  11
2

1 1

1

1 1

1
( )

( , 2)

N n Knp p
f p

I n N n K

  



  

                                      (2) 

 

 

We observe that, if the number of classes is strictly above 2, this law does not coincide 

with the law we would have, dividing into 2 classes: the first one and the rest. This law 

would have as a density:  

 

  11

1 1

1 1

, 1

1 1

1
( )

( , )

N nn

n N n

p p
f p

I n N n
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([BB1], Chapter 14, §5, Proposition 1). 

 

 

2. Computing the expectations and the variances 

 

We recall that the expectation of  
, ( ) (1 )n N n

n N nf x c x x 

    is  
1

2

n

N




 ([BB1], Chapter 14, 

§5.B, Proposition 3). 

 

The expectation of  
  11

2

1 1

1

1 1

1
( )

( , 2)

N n Knp p
f p

I n N n K

  



  

 is therefore :  

 

1
1 1

1
( )

n
E p

N K



 


, 

 

and the same for the other kp  :  

 

1
( ) k

k k

n
E p

N K



 


                                                       (3) 

 

We see that this quantity is different from /kn N ; both coincide only asymptotically, 

when N  . We observe also that k is never equal to 0, even if 0kn   : a value 

which has never been observed may be seen in the future. 

 

The sum of expectations is of course equal to 1 :  

 

   
1 1 1

1 1 1
( ) 1 1

K K K
k

k k

k k k

n
E p n N K

N K N K N K  

  
         

    

 

By [BB1], Chapter 14, §5.E, Proposition 5, the variance of ,n N nf   is :  

 

2

, 2

( 1)( 1)

( 2) ( 3)
n N

n N n

N N


  


 
 

 

with N  replaced by 2N K  . So, for each 1,...,k K   

 

2

2

( 1)( 1 )

( ) ( 1)

k k
k

n N K n

N K N K


   


  
                                            (4) 

 

Let us compute the sum of all variances. We find : 

 

2 2 1

2
1

( 1)( 1 )

( ) ( 1)

K

k kK

k
k

k

n N K n

N K N K
  



   

 
  


  

 

that is : 
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2

2

1 12

2

( 1) 1

( ) ( 1)

K K

k k

k k

n n

N K N K
  

 
   

 
  

 
 

 

or : 

 

 
2

2

1 12

2

1 1

( 1) 1

( 1) ( 1) 1

K K

k k

k k

K K

k k

k k

n n

n n

  

 

 
   

 
   

     
   

 

 

 

 

Set 1k kn   . We get a simple formula : 

 
2

2

1 12

2

1 1

1

K K

k k

k k

K K

k k

k k

 



 

 

 

 
 

 
   

   
   

 

 

 

and, with 
1

K

k

k

S 


 and 
2

2

1

K

k

k

S 


 , we can write : 

 
2

2 2

2 ( 1)

S S

S S






 

 

However, this global variance is not a good indicator ; it gives the same weight to all 

elementary terms, and, moreover, we are interested in separate estimates for all k 's. So, 

let us come back to elementary variances. 

 

We have the following elementary proposition : 

 

Proposition 2. – For each k , for fixed N  and K , the variance 
2

k , as a function of kn , 

is increasing when 0 1
2

k

N K
n


    and decreasing when 1

2
k

N K
n N


   . The max-

imum value, obtained for 1
2

k

N K
n


  , is 

2

,max

1

4( 1)
k

N K
 

 
. The minimum value, 

obtained for 0kn  , is  
2

,min 2 2

1 1

( ) ( 1) ( )
k

N K

N K N K N K


 
 

   
. 

 

The proof of this proposition follows immediately from formula (4). We observe that the 

value for kn N  is 
2

( 1)( 1)

( ) ( 1)

N K

N K N K

 

  
, which is usually bigger than 

2

1

( )N K
. 

 

Here is the graph of 
2

k  for 1000N  , 10K  : 
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Figure 1 : Graph of the variance of each term 

 

As a corollary, we see that the variance, for each k , tends to zero when the sample in-

creases. 

 

We observe that the variance of each term does not need to decrease when the sample 

increases (that is, N is replaced by 1N  ). Let us see this on an example, when 1n  is re-

placed by 1 1n  . The condition: 

 

2 21 1 1 1
1 1 1 12 2

( 2)( 1 ) ( 1)( 1 )
( 1) ( )

( 1) ( 2) ( ) ( 1)

n N K n n N K n
n n

N K N K N K N K
 

       
   

      
 

 

is equivalent to : 

 

1 1

2

2 1

( 1)( 2) ( )

n n

N K N K N K

 


    
 

 

or : 

 

1

2

1

2 ( 1)( 2)

1 ( )

n N K N K

n N K

    


 
 

 
2

2 2

1

1 ( ) 3( ) 2 3 2
1 1

1 ( ) ( )

N K N K

n N K N K N K

   
    

   
 

 

2

1

1 3 2

1 ( )n N K N K
 

  
 

 

which is not true in general.  

 

Asymptotically, when N  , the behavior of k  is easy to obtain : 
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Proposition 3. – When N  , 

 

2 (1 )k k
k

p p

N



, 

 

where lim .k
k N

n
p

N
  

 

 

3. Dependence upon the number of classes 

 

We observe that the number of classes K  appears in all these estimates. If we restrict 

ourselves to the values which appeared, this is perfectly clear and legitimate. However, 

as the examples below will show, we often want to take into account values which have 

not appeared but might, if the sample was bigger. For instance, if in some river we ob-

served, for some pollutant, a concentration of 0.3 g/l and in another a concentration of 0.5 

g/l, there is no reason that a concentration of 0.4 g/l might not exist somewhere. Also, 

there is a question about the upper limit and the lower limit : should we stop at 1 g/l, 10 

g/l, and so on ?  

 

Another example is about temperatures. If our experiment deals with the temperatures 

that one can observe in Paris, what extremes should we take ? Of course, we should not 

restrict ourselves to the temperatures which have already been observed, since warmer 

ones and colder ones are also possible. 

 

There is no standard, theoretical answer to this question. The list of possible classes de-

pends on the problem ; it has to be set both looking at the existing (historical) data, and 

the physics of the problem.  

 

4. Confidence interval for each kp  

 

Since we have a probability law for kp , and since we know its expectation and variance, 

we can deduce a confidence interval, using Bienaymé-Chebycheff's inequality, for each 

k , under the form : 

 

 
2

2
P X


 


    

 

that is, with our present notation : 

 

 
2

2
1 k

k k kP p


   


       

 

We observe that, usually, when the law of the variable is explicitly given (as it is the case 

here), Bienaymé-Chebycheff's inequality is not the best way to obtain confidence inter-

vals : explicit computations of the integrals give better results in general. But here, it 

turns out that this inequality gives more precise intervals than the ones which were de-

rived (by explicit, but approximate computations) in [BB1], Chapter 14, §11.  
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We want a confidence interval for 
kp , with confidence 0.95   (this is an arbitrary 

choice). This means that : 

 
2

2
1 k 


   

 

Therefore, we have to take : 

 

1

k





 

 

So the interval : 

 

1 1

k k
k k k kI p

 
 

 

 
     

  
 

 

is a  - confidence interval for kp . This is true in general ; however, this interval may be 

quite large. We will say that the sample is satisfactory is most of these intervals are 

small enough, namely if they fit within a given precision. 

 

Fix a precision 1/10   (this choice is arbitrary). We will say that the interval kI  above 

fits within the precision   if it is of the form  (1 ) ,(1 )x x   . This is the case if the 

condition : 

 

1

k
k


 





 

 

that is : 

1k

k


 


   

 

is satisfied. We define : 

 

k
k

k

w



  

 

(the letter w  stands for "width" of the interval). Using the above definitions of k  and 

k  we get : 

 

 
1

( 1) 1

k
k

k

N K n
w

N K n

  


  
 

 

and we want : 

 

 2 1kw                                                           (C) 

 

We have obtained : 
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Proposition 4. - We have : 

 

1 1
(1 ) (1 )k k

k

n n
P p

N K N K
  

  
     

  
 

 

as soon as : 

 

2
1

1 (1 )( 1)
k

N K
n

N K 


 

   
                                        1( )C  

 

This condition is a fortiori satisfied as soon as : 

 

 2

1

1
kn

 



                                                 2( )C  

 

Proof of Proposition 4 : the condition 1( )C is simply a rephrasing of condition ( )C , using 

the definition of  kw ; the fact that 2( )C  is stronger than 1( )C  is obvious. 

 

We note that condition 2( )C  does not depend on N or K ; this is an absolute condition, 

which says that if there are enough observations in the k -th class, then there is a high 

probability to have a sharp estimate on kp . 

 

For instance, if 0.1   (10% precision) and 0.95   (95% confidence), we find 

2 000kn  . It means that, no matter how large the total sample is, no matter how many 

classes there are, if a class has more than 2 000 observations, a 10 % precision will be 

obtained upon kp  with 95% probability. 

 

Such an estimate, valid for all N and K , is very conservative (this is due to the use of 

the inequality of Bienaymé-Tchebycheff). So later we will find more precise means to 

determine whether the information is sufficient. 

 

In fact, we do not need condition ( C ) to hold for all k 's. We will be satisfied if it holds for 

most of them. Fix a "satisfaction index" 0.96   (this is arbitrary ; we took it different 

from  ). Then we will be satisfied with satisfaction index   if condition (C ) holds for a 

set 
1
,...,

nk kp p with 
1 nk kp p    . 

 

In practice, one will check the converse, namely that the sum of all kp  for which condi-

tion ( )C  is not satisfied is at most 1  . 

 

So, finally, we need three concepts in order to define global satisfaction : 

 

 

 The number   (here 0.96 ), which indicates the proportion of classes which are 

correctly handled from the sample. Here, we want 96 % of the classes. 

 

 The number   which denotes the confidence interval. We are sure, with probabil-

ity 0.95   that each kp  will be in the chosen interval. 
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 The precision   which relates the size of the interval to a precision of the mea-

surement. It says that the interval will be of the form  (1 ) ,(1 )k kp p   . 

 

5. Asymptotic estimates for the confidence interval for each 
kp  

 

We now determine explicitly the set where the density of each 
kp  is small ; these esti-

mates improve upon the ones given in [BB1], Chapter 14. They are only asymptotic es-

timates, valid when N  . 

 

In order to simplify the notation, let p be any of the kp 's and let n  be the corresponding 

kn . Let ( )f x  be the density of .p  We have : 

 

Proposition 5. – The maximum value of f  is taken for x p ; its value is : 

 

max ( )
2 (1 )

x

N
f x

p p



 

 

For any 0  , outside the interval  ,I p p    with : 

 
1/2

1

2 (1 )

N
Log

N p p


 

 
    

 

 

the function f  satisfies ( )f x  . 

 

Finally, for any 0  , on the interval  ,I p p       with : 

 

(1 )p p

N





   

the function f  satisfies ( ) 1
I

f x dx 


  .Moreover, at the endpoints : 

1 (1 )
( )

2 (1 ) 2

N p p
f p

p p N


  


 


 

 

 

 

Proof of Proposition 5.  

 

When N  , n pN , and the density ( )f x  given by Proposition 1, simplifies to : 

 

( ) ( )f x x  

 

with : 

 

 1(1 )
( )

( , (1 ) )

N
p px x

x
I pN p N
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Using Stirling's formula, we have : 

 

 

(1 )

(1 )

( )!((1 ) )!
( , (1 ) )

( 1)!

(1 )
2 (1 )

1

2 (1 )
(1 )

pN p N

N
p p

pN p N
I pN p N

N

p p
p p N

N

p p
p p

N










 











 

 

and therefore : 

 

1

(1 )

(1 )
( )

(1 ) 2 (1 )

N
p p

p p

x x N
x

p p p p








 
 

  
 

 

Since the maximum of the function 
1( ) (1 )p ph x x x    is obtained for x p , we see that 

the maximum is ( )x  is also obtained for x p  and the maximum value is : 

 

( ) max ( )
2 (1 )

x

N
p x

p p
 


 


. 

 

When N  , the function ( )x  is more and more concentrated around its mean, 

which is p  (since 0  ). Therefore, let x p   , with 0   when N  , and let 

us evaluate ( )x . We have : 

 

  

 

1

(1 )

1

2

( ) (1 )
( )

(1 ) 2 (1 )

1 1
1 2 (1 )

(1 ) 1
2 (1 )

1
2 (1 )

N
p p

p p

N
p p

N

N

p p N
p

p p p p

N

p p p p

N

p p

N

p p

 
 



 



 











   
  

  

    
           

 





 

 

and the same way we obtain : 

 

 2( ) 1
2 (1 )

N N
p

p p
  


 


 

 

So finally : 

 

 2( ) 1
2 (1 )

N N
p

p p
  


 


                                              (1) 
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Let 0   ; the condition ( )p     is equivalent to : 

 
1/2

2 1/ 2 (1 )
1

N

N p p

N


 

 
   

 
 

 

or 
1  , with : 

 
1/2

1/2

1/

1

2 (1 )
1

N

N p p

N


 

  
      

 

 

We observe that : 

 
1/2

1

1

2 (1 )

N
Log

N p p


 

 
   

 

 

 

This proves the second part of our Proposition. The third part follows immediately from 

Bienaymé-Tchebycheff's inequality, since : 

 

( ) 1

m

m

f x dx P m X m









 


 





 
       

 
  

 

with m p  and 
(1 )p p

N



 . The estimates at the endpoints come from (1), with   

replaced by 
(1 )p p

N





  .  

 

6. A first example : pollution in rivers 

 

The following example comes from a contract we had in 2008 with the Water Agency 

"Artois-Picardie" in France. It deals with the concentration in the pollutant NH4. 

 

There are 104 measure points, and at each point the concentration in NH4 is measured. 

Among these 104 measure points, there is only one where the concentration is 0.03 g/l (to 

be understood as in the class 0.025 - 0.035).  

 

So, with our previous notation, we have 1 1n  , 104N  . The number of possible values 

is : 2000K   (basically, from 0 to 20 g/l). We are interested in the probability density of 

1p , to be in the class 0.025 - 0.035 g/l. 

 

This density is : 

 

 
2101

1 1

1

1
( )

(1,2101)

p p
f p

I
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with : 

 

1! 2101! 1
(1,2101)

2103! 2102 2103
I  


 

 

The expectation is : 

 

31
1 1

1 2
( ) 0.95 10

2104

n
E p

N K
 
    


 

 

and the variance : 

 

 
2 61 1
1 22

( 1)( 1 ) 2 2102
0.45 10

( ) ( 1) 2104 2105

n N K n

N K N K
     

   
   

 

 

Now, we use Bienaymé-Chebycheff's inequality, under the form : 

 

 
2

1 1 1 2
1P p


   


       

 

We want this probability to be 0.95 (this is an arbitrary choice). So we need to take   

such that : 

 
2

2
1 0.95




   

 

which gives : 

 

20.3 10
0.05


     

 

The quantity 1   is negative, which gives no information, since a concentration must 

be positive. So, using only the bound 1  , we get that : 

 
2

10 0.405 10p     

 

with probability 0.95. 

 

So we obtain the following result : the probability, for a given measure station, to be in 

the class NH4 0.03  is 0 .004  with a 95% confidence. This amount of pollution (very 

low concentration) is expected to be extremely rare. 

 

Similar results may be obtained for all classes. 
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7. A second example : Trains being late 

 

During the year 2008, we had a contract with the "Réseau Ferré de France" (French 

Railways) ; it dealt with the statistics of the delays for the trains. Data are as follows : 

for a given delay 
kx , in minutes, between 1 and 600K   maximum, we know the num-

ber 
kn  of trains having this delay, among all French trains in a given year. The total 

600

1

k

k

N n


  is therefore the number of trains which, during that year, experienced a delay 

between 1 and 600 minutes.  

 

With the above notation, we fix 0.90  (90% confidence interval) 0.1  (precision 

10%). We find that condition ( )C , that is  2 1kw    , is satisfied for 84 % of the 

trains ; more precisely those which have delay 26  min, and is not satisfied for those 

which have longer delays. 

 

What does this mean in practice ? We consider here the delays of the trains as a random 

variable (this delay depends on many factors, which are not perfectly known). Our 

statement means that, if we want to know the law of this random variable, the sample 

coming from the year 2006 is satisfactory (up to the precision announced) for trains with 

delays 26  min and is insufficient for trains with longer delays. In other words, for 

trains with longer delays, the estimate we get from one year of observation is too vague, 

because such trains are not numerous enough ; in order to improve the sample, more 

years are necessary. 

 

 

 

8. Properties of the precision width kw  

 

Recall that : 

 

 
1

( 1) 1

k
k

k

N K n
w

N K n

  


  
 

 

defines the size of the interval around each kp . We omit the subscript k  and we write 

( , , )w N K n  to indicate that this number depends on the total size of the sample N , on 

the number of classes K  and on the number of realizations n  in that particular class.  

 

We have the following results : 

 

Proposition 6. - The number ( , , )w N K n  decreases (that is, we have a smaller interval) if 

a new measurement appears in that particular class, that is : 

 

( 1, , 1) ( , , )w N K n w N K n    

 

The proof of this statement is obvious, since the numerator does not change, whereas the 

denominator increases. 
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Proposition 7. - The number ( , , )w N K n  increases if a new measurement appears in 

another class, that is :  

 

( 1, , ) ( , , )w N K n w N K n   

 

Indeed, this statement means :  

 

   
1

( 2) 1 ( 1) 1

N K n N K n

N K n N K n

    


     
 

 

or :  

 

1

2 1

N K n N K n

N K N K

    


   
 

 

which is equivalent to :  

 

2 2
1 1

2 1

n n

N K N K

 
  

   
 

 

which is satisfied. 

 

Proposition 8. - The number ( , , )w N K n  increases if a new (empty) class appears, that 

is : 

 

( , 1, ) ( , , )w N K n w N K n  . 

 

The proof is the same as for Proposition 7 above. 

 

These properties are easy to understand : a new measurement in the first class improves 

the estimate upon 1p  ; all other situations make it worse.  

 

Our conclusion in this paragraph is that the probability law 1( ,..., )Kf p p  gives a satis-

factory information about the sample : we may conclude if the sample is sufficient or not, 

or, more specifically, if some classes are sufficient or not. 

 

We observe that the precision of the measurement devices appears in this definition, but 

in a hidden manner : it appears in the number of classes. If the measurement is very 

precise, the number of classes is high ; if the precision is low, so is the number of classes. 

In our example regarding trains, the precision is one minute ; therefore we have 600 

classes for delays between 1 minute and 10 hours. If the range was the same, but with 

precision 10 seconds, we would have 6 times more classes. 
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V. The dynamical situation 

 

The dynamical situation seems much more satisfactory: we see the sample growing. So 

we may decide to stop when the total sample contains hardly more information than the 

samples we collected earlier.  

 

Let, as before, K  be the number of classes. Let 1,..., N   be the successive sizes of the 

sample. Let 
,i kX  be the random variable which indicates whether, at the i -th trial, we 

fell into the k -th class or not : so 
, 1i kX   if we fell in the k -th class, or 0 otherwise. We 

have : 

 

,

1

1
K

i k

k

X


 , for all i  (this means that we have only one result for each trial) 

 

,

1

N

i k k

i

X n


 , for all k , where kn  is, as before, the number of occurrences of the k -th class 

among N  trials. 

 

The ,i kX  are independent Bernoulli random variables. The probability  , 1k i kp P X   is 

unknown, it is the same for all i  : this is what we want to estimate. We will show how to 

do it for the first class and it will be the same for all k . Therefore, in the sequel, we drop 

the subscript k  and speak simply of p instead of kp . The same way, we write simply iX  

instead of ,i kX . 

 

The iX  are independent random variables with same law. Each variable iX  has mean 

p . We set 0 (1 )p p   , so 
2

0  is the variance of all the iX 's. 

 

At the  -th step, we look at the quantity 1X X
Y 




 
 ; it indicates the proportion of 

successes of the first class among the first   trials. By the empirical law of large num-

bers, Y p   when   . 

 

Let y  be the realization of Y on our sample (the observed values). Then the quantity : 

 
2

2 2

1 1

1 1N N

N y y
N N

 
 


 

 
  

 
   

 

can be called the variance of the sample of the 1,..., Ny y . This is a realization of the ran-

dom variable : 

 
2

2 2

1 1

1 1N N

NS Y Y
N N
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Of course, when N  , 0NS  , both almost everywhere and in law ; this is simply 

due to the fact that Y p   for the a.e. convergence and follows from the Central Limit 

Theorem for the convergence in law. 

 

Then one may take the following decision rule : when the variance of the sample  

1,..., Ny y  is small enough, we consider that we have reached the limit with proper preci-

sion, and we take the estimate : 

 

1 Ny y
p

N

 
 . 

 

The question is : is this decision rule correct, and what uncertainty does it give upon the 

estimate for p ? Or, in other words, how do we estimate the difference 1 Ny y
p

N

 
 ? 

 

Asymptotically, when N  , this decision rule is correct, since each Y  follows a nor-

mal law with parameters 0,p



. Then the law of 1 NY Y

N

 
 is explicit ; its expectation 

is p  and the probability : 

 

1 NY Y
P p

N


   
  

 
 

 

can be computed explicitly. But all this is true only asymptotically ! 

 

If now we want to obtain a correct result for a given value of N , we may proceed as fol-

lows : 

 

Proposition 9. – If 
2

1

(1 )
N

p 



, within a confidence level  , we have the estimate : 

 

1 1

p p
p

 
 

 
. 

 

 

 

Proof of Proposition 9. 

 

We compute explicitly : 

 

 NP Y p p  . 

 

Since 1 N
N

X X
Y

N

 
 , and the iX  are independent r.v., we get : 

 

0( )NY
N


  , 
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and therefore, by Bienaymé-Tchebycheff : 

 

 
2

0

2 2 2

1
N

p
P Y p p

N p N p




 


    . 

 

For given 0  , this probability is small when N is large enough. Therefore, for most 

realizations of 
NY , the observed value must be close to p . 

 

Let 1 Nx x
p

N

 
  be the observed realization.   

If p p p  , we would have a realization of 
NY  far from p (since this realization is on 

p ), which is very unlikely : this has probability at most 
2

1 p

N p


. So we see that : 

 

1 1

p p
p

 
 

 
 

 

with probability at least 
2

1
1

p

N p


 . If we want a confidence level   (say 0.95  ), then 

we get the estimate : 

 

2

1

(1 )
N

p 



                                                (5.1) 

 

We observe that p  appears in this estimate : one needs to know at least a lower bound 

for p in order to apply it (for instance, one must know that 0.1p  ). This proves our 

Proposition. 

 

Now, if we use 1,..., NY Y  (and not just NY ), we will improve upon this proposition, as fol-

lows : 

 

Proposition 10. – If : 

 

 
2

2

2

( )2
(1 )

2

Log N
p

N N
     

 

then, with a confidence level  , we have the estimate : 

 

1 1

p p
p

 
 

 
. 

 

Proof of Proposition 10. 

 

We compute : 

 

1 NY Y
P p p

N
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First, we need to compute 
2 1 NY Y

N


  
 
 

. We have : 

 

1

1 1

1

1

1

N

N j

j

N N

j

j j

Y Y X

X











 

 

  

 
  

 

 

 

 

 

and therefore : 

 

 
2

2
2 0

12 2
1

1 1N N

N

j j

Y Y
N N 




 

 
    

 
   

 

Set 

2

1

1
( )

N N

j j

u N
  

 
  

 
  . Then, Bienaymé-Tchebycheff's inequality gives : 

 
2

1 0

2 2 2

( )NY Y u N
P p p

N N p






   
   

 
 

 

Let now  

 

Let 1 Ny y
p

N

 
  be now the observed realization of 1 NY Y

N

 
. The same reasoning 

as above shows that : 

 

1 1

p p
p

 
 

 
 

 

with probability 
2 2

( )(1 )
1

u N p

N p


 . If we want a confidence level  , we get the estimate : 

2

2

( )
(1 )

u N
p

N
    

 

Using a Taylor expansion of ( )u N , we obtain the sufficient condition : 

 

 
2

2

2

( )2
(1 )

2

Log N
p

N N
                                      (5.2) 

 

which is better than (5.1). Of course, it still contains the parameter p . This concludes 

the proof. 
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