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I. General considerations 

 

Many people use prediction models, in order to forecast a population, a consumption, a 

temperature, a new position, and so on. Typically, we have some data from the past and 

we would like to predict how they will behave in the future. Let 
n
x  be the existing data, 

for instance indexed by the date (years). The 
n
x  may be precise or imprecise (given by 

probability laws). 

 

What people do is usually to adjust a "trend" (typically a straight line, obtained by linear 

regression), and conclude from this trend. This practice has three drawbacks : 

 

− All points have equal weight : the ancient past counts as much as the recent past ; 

 

− No confidence interval is possible ; 

 

− The trend which is detected is only linear ; 

 

− This trend is quite "fragile", in the sense that it depends strongly upon the available 

time-interval. Let's look at the following three graphs : they represent the same func-

tion, but on 3 different time intervals : Recent past (interval 3.6 - 3.7), Medium past 

(interval 3 - 3.7), Complete past (interval 1 - 3.7). Depending on the interval chosen, 

the trend is completely different. 

 

 

 

 
Recent past (interval 3.6 - 3.7)          Medium past (interval 3 - 3.7)        Complete past (interval 1 - 3.7) 
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In order to predict a position, one often uses tools called "filters" (the best example is the 

so-called "Kalman filter"). These prediction methods usually assume the phenomenon to 

be linear and the errors to be Gaussian, which is not true in  practice. 

 

So there is clearly a need for better, more robust methods. 

 

II. Choice between two approaches 

 

Two approaches may be considered, and I would like to emphasize the fact that they are 

quite different. 

 

1. Probabilistic approaches directly on the values 

 

This is simple : from all values 
n
x  you build an histogram : how many are in this inter-

val, and so on. For instance, you may consider the temperature in Paris, for each day, for 

the last 130 years (existing records). Take for example the temperature for January 1st : 

you have 130 data, from which you can build an histogram, such as this one:  

 

histogramme températures Paris 1er janvier
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Then from this histogram you can predict a future value : the average (3.9°C) is the pre-

diction which will give you the smallest error. 

 

This analysis is completely correct if the process is stationary, that is if its law does not 

change with time (no cooling or warming), and if the next value is independent from the 

previous ones. 

 

It uses all data with equal weight and will never predict a value which is outside what 

has been seen before. 

 

More sophisticated tools, such as our "Experimental Probabilistic Hypersurface" have 

the same characteristics : existing information conveys information to new places (a pre-

cise value is sent as a density of probability), but this new information is mostly carried 

by old values. For instance, assume we construct the EPH just from the following data  

 
2005 9,6°C 

2006 5,6°C 
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and we want to predict the temperature for January 1st, 2007. The first data (2005) will 

send a Gaussian density centered at 9.6 ; the second will send a Gaussian density cen-

tered at 5.6 ; the result will be a combination of the two, which much more weight upon 

2006, since it is closer.  We might obtain something like this : 

 

 
 

Graph of the density function, predicted temperature for January 1st, 2007 

 

Here, some stationarity assumption is also made : we use data from the past and propa-

gate them to the future ; only the time interval is used. 

 

2. Trends 

 

Let's now take a completely different set of data. Look at the simple example 
n
x n=  for 

all 1,...,n N= . This is by no means a stationary process. 

 

The simplest probabilistic method will give you the average of previous values, that is 
1 ... 1

2

N N

N

+ + +
= . The EPH will give you a weighted combination of Gaussian func-

tions, with high value at N , then lower at 1N − , 2N − , and so on. None of these 

methods predicts the value 1 1
N
x N
+
= + , as we would expect. 

 

This comes from the fact that we applied the methods to the wrong data. We should not 

apply them to 
n
x n=  but to the increments 1 1

n n
x x

−
− = . Then everything becomes 

normal again : prediction using average gives 1, and using EPH gives a gaussian func-

tion centered at 1. 

 

Conversely, let's try to consider differences of temperatures, as above. We now consider 

the sequence 1n n
t t

−
− , for 130 years, that is 2 1t t− ,…, 1N N

t t
−

− . The average of these 129 

numbers is simply 

 

2 1 3 2 1 1...

1 1
N N N

t t t t t t t t

N N

−
− + − + + − −

=
− −

 

and this will lead to the prediction : 
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2006 1877
2007 2006

129

t t
t t

−
= +  

which is absurd. 

 

So if we apply the increment method to a stationary process, we get a conclusion which is 

absurd. 

 

III. Proper choice of the method 

 

But how do we know when we should apply the tools to 
n
x  or to 1n n

x x
−

− , or to other, 

more complicated combinations ? Two factors should be taken into account : 

 

− The process is stationary or not ; 

 

− The data are independent or not. 

 

These two things are different. The first one means that the law of the process does not 

change with time. The second one means that your knowledge of the n-th data is not im-

proved by the knowledge of the previous ones. 

 

A. Case of stationary process, independent data  

 

Examples : temperatures of January 1st, or sampling of sizes in a given city. 

 

Then build the probability law of the process and use the expectation as a prediction. 

 

B. Case of non-stationary process, independent data 

 

Examples : temperatures of January 1st in a region of global warming, or global cooling ; 

sampling of sizes in a city, over several hundreds of years (heights increase). 

 

Using the probability laws for the previous years, try to build the probability law for the 

next year. This is done using the repartition function for each year. Then take the expec-

tation of the probability law for year n as a prediction. 

 

C. Case of stationary process, non independent data 

 

This is typically the case of a moving object, if we assume that at each place there is an 

error of observation, and this error has always the same law.  

 

If I know the positions 1 1,...,
n

x x
−
 of the object in the past, I will not look for it at the 

same place than if I know nothing ; previous positions give an information about the 

next one. So consecutive positions are not independent. 

 

Then, one should build a "mechanistic model", depending of the movement. For instance, 

if we have reasons to believe the object has a uniform movement, or is falling, and so on, 

we will take a linear or quadratic model. Then the coefficients of this model will be ad-

justed using the available data. 
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D. Case of non stationary process, non independent data 

 

This is the case for a moving object, where the observation error depends upon the posi-

tion. This is the case in practice, since the error is bigger when the object is further. 

Then one should try to do both B) and C), that is try to build the new probability law, 

and, at the same time, build a mechanistic model for the moving object. 

 

IV. Recent past and ancient past 

 

Prediction models tend to concentrate upon recent past : ancient data are usually less 

reliable, and people usually think that their influence upon the future is weaker. This is 

wrong, as the illustration given above shows : a given function is plotted first on a small 

recent interval (3.6 - 3.7), then on a bigger interval to the past (3 - 3.7), then on the 

whole set 1 - 3.7. Behaviors are quite different. We have a phenomenon which is globally 

decreasing, but with large oscillations. Depending on our view point, we may conclude 

that the process is increasing (recent past), oscillating, decreasing. 

 

V. Conclusion 

 

We note the following : 

 

− Our results may be totally wrong if we do not use the correct prediction model ; 

 

− No model should be used in order to predict a future that is too far ; if you have 

N data, you may try to predict at most /3N  or /2N  data in the future ; to predict 

more is not reasonable ; 

 

− The classification into stationary/non stationary and independent/non independent 

gives a preliminary basis in order to find the correct model. 

 

− There are cases where we do not know what is the correct prediction model. 

 

In such a case, we should make it very clear in our conclusions that they depend upon 

the choice of a model, which is purely hypothetical at this stage, so that we cannot rec-

ommend any action. 

 

 

 


