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Executive summary 

 

By means of conditional probabilities, we build robust methods, in order to handle extremely 

rare events. These methods do not rely upon any pre-defined probability law (such as Gumbel, 

exponential,  Poisson, and so on), since the use of such laws is totally academic and has no 

reality at all. Our methods give the probability of the rare events, but, which is more, they 

give a probability law for this probability, with expectation, variance, confidence intervals, etc. 

 

Here is an example of what we obtain, using the historical records of temperature in Paris 

since 1873, for the value 40.4°C (absolute record, on July 28th, 1947) and for 41°C (which has 

never been recorded): 

 

  

proba per 
year  

proba not in 
100 years 

proba not in 
1000 years 

duration for 
95 % proba 

(years) 

duration for 
50 % proba 

(years) 

40,4 0,003 0,769 0,072 1 140 264 

41 0,001 0,913 0,401 3 279 759 

 

It says for instance that we have 50% chances to see again 40.4°C in the next 250 years, and 

we are completely sure to see it again in the next 1,000 years. So, clearly, this temperature is 

not of "centennial" type (to be seen every 100 years), but rather of type 500. The temperature 

41°C is to be seen in a range 700 to 3,000 years : it is of "millennium" type. 

 

Technically, our method relies upon the evaluation of a very complicated multiple integral, 

upon a specific volume in a multi-dimensional space. This evaluation is quite delicate, and 

quite surprisingly, it is done using symbolic exact computation, in Maple.  
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I. Presentation of the problem 

 

Extremely rare events, as such, are an interesting challenge for a mathematician : since, by 

definition, very few data are available, they defy the common laws of statistics.  

 

The commonly used method, in order to compensate the lack of data, is to rely upon some con-

ventional probability law. For instance, to say that high temperatures in a given city obey a 

probability law of Gumbel type, or rare events of seismic type obey a Poisson law, and so on. 

These laws have the obvious advantage to depend on very few parameters, so they easily fit 

with rare observations. But, even if they are commonly accepted, such laws are totally ficti-

tious, and do not describe at all the reality. More precisely, some specific contracts we had in 

2008 with the French "Commissariat pour l'Energie Atomique" showed that, in epidemiology 

and seismology, the reason of the poor prediction by the models was precisely the inappro-

priate choice of such laws. 

 

Our ambition in this article is to build probabilistic methods, especially designed in order to 

handle rare events. These probabilistic methods are related to "conditional probabilities" ; 

they answer the following type of question : assuming that events of "magnitudes" 1,..., km m  

have been observed in the past, what is the probability to observe an event of magnitude m ? 

Here, m  may be any of the 1,..., km m  (already observed) or any new value, smaller or bigger. 

 

Such probabilistic methods are totally "robust", in the sense that they require no assumption 

at all : they do not rely on any parametric law (Poisson, exponential, Gumbel, and so on), and 

do not require any adjustment (such as linear or polynomial regression). 

 

The methods will be built on an example, that of temperatures in Paris, for clarity. Quite ob-

viously, they can be transferred to all rare events. 

 

 

II. Extreme temperatures in Paris 

 

As it is well-known, the temperature record in Paris is 40.4°C, which was observed on July 

28th, 1947. This is based upon meteorological observations in Paris, starting 01/01/1873 and 

finishing 31/12/2004, that is 48 212 days (courtesy of Meteo-France, more recent data are not 

easily available). 

 

An interesting remark, to be made before any theory is developed, is that these high tempera-

tures are very "irregular". For instance, no temperature in the range 39.6 – 40.2 has ever been 

recorded. 

 

Let us look at the following graph, which will be the key feature for our study : 
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Graph 1 : high temperatures in Paris 

 

 

The x  axis is the temperature, step 0.2°C. The y  axis indicates the number of days (among 

the 48 212 N  records), during which this temperature was achieved. For instance (first da-

ta), there were nine days during which the temperature was between 35°C and 35.2°C (when 

we speak of "temperature", we mean : maximal temperature of a given day, not average). 

 

We see, as we said before, that this curve is quite irregular. One would expect it to be decreas-

ing, but it is not. The reason is of course that the observations are insufficient : 132 years are 

not enough to reveal all possible temperatures. We may consider that, if we waited for 1,000 or 

10,000 years, the temperatures 39°C or 39.8°C would show up. But how long will this take ? 

And, beyond the record of 40.4, no higher temperature ever appeared. If we wait for 10,000 

years, there is no reason that, for instance, 41°C might not appear. But  again how long will 

this take ? The purpose of this article is to answer these two questions, using probabilistic 

techniques. 

 

 

III. Discussion about the season 

 

Let ( )p f   be the function which, for a given temperature (step 0.2°C) returns its probabili-

ty. But what does this mean ? 

 

It means that if we take a given temperature, say 36.6°C, and a large number of observations 

(say a billion days), the proportion of days with this temperature will be (36.6).p f  

 

This approach of the probability, using the empirical law of large numbers, is correct and al-

lows us to avoid any reference to the situation of the day in the year. Of course, it is very un-

likely to meet 36.6°C in January : this has never been met in Paris, but why should we exclude 

it a priori ? Temperature above 35°C have been met in June, July, August and September, so 

the "possible season" is not easy to define, and depends upon the temperature we investigate.  

 

Still, we do not want to use a considerable dataset, most of which would be irrelevant. So we 

will restrict our data to the four months of June, July, August, and September, for the years 

from 1873 to 2004 : this gives 16,104 data. We will restrict our investigation of high tempera-

tures to 35  ; we checked that among the 132 years, no such temperatures occurred during 
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one of the other 8 months. The graph above is the same, but was obtained from 16,104 data, 

and not 48,212. 

 

The first task we have to perform is to "regularize" the above graph. 

 

IV. Regularizing the high-temperature curve 

 

Let 16,104 N  be the total number of observations, and K  be the number of possible values. 

Since we investigate the range 35°C to 40.4°C, step 0.2°C, we have 28 possible values kv  : 

1 35,v   2 35.2v  , …, 35 0.2 ( 1)kv k    , … , 28 40.4v  , so 28K  . 

 

For 1,...,k K , let kn  be the number of times the value kv has been observed ; this is given by 

the following table (from which the graph above comes) : 

 

temp nb of days temp nb of days 

35 9 38 1 

35,2 7 38,2 1 

35,4 8 38,4 1 

35,6 11 38,6 2 

35,8 6 38,8 0 

36 3 39 0 

36,2 7 39,2 0 

36,4 6 39,4 3 

36,6 6 39,6 0 

36,8 4 39,8 0 

37 3 40 0 

37,2 4 40,2 0 

37,4 1 40,4 1 

37,6 2 40,6 0 

37,8 2 40,8 0 

  
41 0 

 
Table 2 : number of days for each temperature 

 

So we have a total of 
1

88
K

k

k

n


  days where the temperature has been 35 C  . 

Let finally kp  ( 1,...,k K ) be the (unknown) probability of the value kv . We want to estimate 

it from the observations kn . But in fact, we do not just want an estimate : we want a probabili-

ty law for it. 

 

Recall some elements of the theory developed in [1], chapter 14 : if n  accidents have been ob-

served, over N experiences, the probability of an accident (which is itself a random variable) 

has a density : 

 

, ( ) (1 )n N n

n Nf c      

 

where c  is a normalization factor (so the integral is 1). 
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We consider it as reasonable to admit that, for high temperatures, the probabilities kp  will be 

decreasing : it is less likely to meet 36.6 than to meet 36.4. Logically, this is not completely 

clear : there might be two "regimes", for instance high wind and low wind, with different prop-

erties in terms of probabilities. Nevertheless, let us take this assumption of decreasing proba-

bilities, at least for temperatures above 35°C. 

 

We need to have a consistent set of probabilities, namely 1k

k

p  .   

 

Then the joint law of our set  1,..., Kp p  will be given by : 

 

  1

1 1 1( ,..., ) 1 ,..., Kn n

K S K Kf c       

 

where: 

 

 

− 1S  is the indicator function of the set  : 

1 1

1

( ,..., ) ; 0, 1
K

K K k

k

S     


 
     
 

 , 

that is the function which is 1 inside this set and 0 outside ; 

 

− c  is a normalization constant : the multiple integral of 1( ,..., )Kf    should be 1. 

 

The marginal law for each kp  has density : 

 

1 1 1 1 1 1( ) ... ( ,..., , , ,..., ) ... ...k k k K k k K

S

f f d d d d                

 

and the assigned value for each kp  will be the expectation : 

 
1

0

( )k kp f d     

 

 

In [BB2], we showed how to compute explicitly the marginal laws for a simpler joint density: 

we did not have the restriction 1 K   . Here, the computation is more difficult, both con-

ceptually and technically. We proceed in two steps. 

 

Step 1 : Computing the integral  

 
1

1 1...
Kn n

K K

V

I x x dx dx   

where : 

1 1( ,..., ) ; ... 0, 1K K k

k

V x x x x x
 

     
 


 

This step is necessary at the theoretical level, in order to understand step 2, but the computa-

tions will not be performed in practice. 
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For any k , we define 1 ...k k Ks x x    , with 1 1.Ks    

 

First, we set : 

 
2

1

1 2

1 1 1

s

n

x x

C x dx


   

 

Then of course : 

 

 1 11 1

1 2 2

1

1

1

n n
C s x

n

 
 


                                                         (1) 

Then we set : 

 

2 3 2s s x   

 

and replace in (1). 

 

The conditions : 

 

2 1 2 3 2x x s s x     

 

lead to : 

 

3
2

2

s
x   

 

Next, we compute : 

 
3

2

2 3

/2

2 1 2 2 2( )

s

n

x x

C C x x dx


   

 

we replace : 

 

3 4 3s s x   

 

and the condition  

 

3 2 3 4 3/ 2 ( ) / 2x x s s x     

 

leads to : 

 

4
3

3

s
x   

 

We continue inductively. Each time, the integrand is a polynomial. The general step is : 

 
1

1

/

1( )
k

k

k k

s k

n

k k k k k

x x

C C x x dx








   



8 
Extreme events, BB 2009/08 

 

and : 

 

1 2 1k k ks s x     

 

The final step is for k K : 

 
1/

1

0

( ) K

K

K

n

K K K K K

x

C C x x dx



   

 

                    

Step 2 : Computing the integral  

 
1

1 1...
Kn n

K K

S

J x x dx dx   

where : 

1 1( ,..., ) ; ... 0, 1K K k

k

S x x x x x
 

     
 

  

 

The ks  are defined as before. We have : 

 
1 2

2

3 2 2 2( ) ...Kn n n

K K

V

J s x x x dx dx 
 

with : 

2 2 2

2

( ,..., ) ; ... 0, 1K K k

k

V x x x x x


 
     
 

  

So we proceed as in step 1. First, we compute : 

 
3

1 2

2 3

/2

2 3 2 2 2( )

s

n n

x x

D s x x dx


 
 

 

and we replace : 

 

3 4 3s s x   

 

Next, we compute : 

 
4

3

3 4

/3

3 2 3 3 3( )

s

n

x x

D D x x dx


   

and we continue inductively as before. The general step is : 

 
1

1

/

1( )
k

k

k k

s k

n

k k k k k

x x

D D x x dx








   

and : 

 

1 2 1k k ks s x     
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The final step is for k K : 

 
1/

1

0

( ) K

K

K

n

K K K K K

x

D D x x dx



   

 

In practice, evaluation of these integrals is quite difficult, because the numerical values are 

extremely small (the order of magnitude is 16010 ). 

 

We proceed inductively, using Maple and its symbolic computation capabilities, which prove to 

be of remarkable help in this situation. Each step is a polynomial, and each integration is per-

formed in an exact manner (with no truncation or rounding off, except at the final stage). 

What we keep at each stage is a fraction of the type 
p

q
, where ,p q  are extremely large integ-

ers. Moreover, in order to limit the size of q , we multiply at each step by a constant factor 610 . 

Here is the Maple program (we use C[k] instead of D[k] in the program) : 

 

 
C[2]:=int((s[3]-x[2])^n[1]*x[2]^n[2],x[2]=x[3]..s[3]/2): 

s[3]:=s[4]-x[3]: 

C[2]:=expand(10^6*C[2]): 
s[30]:=1: 

x[29]:=0: 

for k from 3 to 28 do  

C[k]:=int(C[k-1]*x[k]^n[k],x[k]=x[k+1]..s[k+1]/k) :  

s[k+1]:= s[k+2]-x[k+1]:  

C[k]:=expand(10^6*C[k]):   

od : 

 

At the end, C[28] is obtained at the exact quotient of two very large integers : 

 
(1337609176957210412554728074928312721362678169202352836773988779108585199978664017255887107666252597062730
01603618580497873778657580043149612712585990182198114943116072922816246609299153656219924086824307176803717
25481675840669186891835839988931014496059780516570434686030716965245374317961147493434947044443035715963894
26544083404941728867288019065048526645485656484855253119065231958453251785297082472977262420376180008423345

73001850202271753906268193814049198229839180518643606359599451158494964010577732215268566772788114016147881
91173675982287511590546680679689065920234548030803127830416864228591411380783349769852430427608540132431270
32687942136598111156114628762193576995323412821873036458501442524121092444621536046557312333020545068738949
22840748479831365551923776351475428239647159470568726820622834401555340455426426894575005703239356765414836
59742017723185575360085731362513)/(5510244194996558663119023105829897769342382461252032027825171462390597555
49722446805239987387002669149154119765354882823959982685716684446828597368958530246636450947024215294889895
03454281252657850873642923145155121113295500525434567528385812943989664074199191441202996268148586012820716
14180747816344216690387132263303871806573958733176941111534937350061353434353307433158214826366553704901574

65210749951738928880165714683129014545423638367100838987376285230867615905384225930130249927652149553891398
97260977777135483225652651882061303913787195377041167932296144128932460334370380674789389761102137402558312
53356968480079208032711379909334110424174290386475027181387714625453365196320461511490262804946782402903244
32355695349005607682694665502736709197336385321407075981948141832962535376248756406687869343687626723682033
0290786030663441355227853850044122994489342033920000000000000000000000000) 
 

and is converted to a double-precision real number : 0.2427495279e-8 

 

One checks easily by induction that each kD  is of degree 1 1kn n k     with respect to the 

variable 1kx  . The polynomial of highest degree is therefore 1KD  , which has degree 119 in our 

case. 
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Step 3 : Computing the expectations 

 

The theory presented above gives an explicit value to each expectation, since we know the 

marginal law for each density. We find : 

 

( ) k
k k

J
p E p

J
   

 

where : 

 
1 11 1

1 1 1 1...
k k k Kn n nn n

k k k k K K

S

J x x x x x dx dx 

    

(the k th  exponent has been increased by 1) 

 

and J  has been defined before : 

 
1

1 1...
Kn n

K K

S

J x x dx dx   

with : 

1 1( ,..., ) ; ... 0, 1K K k

k

S x x x x x
 

     
 

  

 The computation of the kJ  is made using the same Maple program.  

 

Here are the results : 

temperature 35 35,2 35,4 35,6 35,8 36 36,2 36,4 36,6 36,8 

proba 0,1209 0,0997 0,0889 0,0805 0,0707 0,0631 0,0580 0,0528 0,0476 0,0423 

           
temperature 37 37,2 37,4 37,6 37,8 38 38,2 38,4 38,6 38,8 

proba 0,0374 0,0332 0,0289 0,0257 0,0228 0,0202 0,0179 0,0159 0,0140 0,0121 

           
temperature 39 39,2 39,4 39,6 39,8 40 40,2 40,4 

  
proba 0,0105 0,0092 0,0080 0,0064 0,0050 0,0038 0,0027 0,0017 

   

 

and here is the comparison with the original data : 
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Graph 3 : Original and corrected data 

 

So, we have obtained (by purely probabilistic techniques) a "regularized" curve (in the present 

case, decreasing) of the probabilities for each event. From this theory, follows that, for in-

stance, the probability of the event "temperature equals 40.4°C", which was seen only once in 

history, is 0.0017. 

 

Here, we restricted ourselves to temperatures 35 C  , so the precise meaning of this state-

ment is the following : among all days with temperature 35 C  , the probability to meet a day 

with temperature 40.4°C is 0.0017.  

 

Since we had 88 days with temperature 35 C   in 48,212 days (that is roughly 132 years), the 

number of days with temperature 40.4°C is on average 88 0.0017 0.1496.   So, per year, the 

probability to meet such an extremely hot day is 
30.1496

1.13 10
132

    . 

 

The probability not to meet it in 1000 years is  
1000

1 0.32  , so we have 68 % chances to 

meet this temperature again in the next millennium. However,  
100

1 0.89  , so we have 

only 11 % chances to see it again during the next 100 years. Our conclusion is here that the 

record temperature of 40.4°C is of "millennium" type, not of century type (and this record is 

already more than 60 years old). 

 

But, in all this construction, we made the assumption that the temperatures 35 C   were all 

in the range 35 40.4 ; of course, this is not completely correct : even if the temperature 

40.4°C has never been surpassed, it may be. So, in the next paragraph, we will see how to 

compute the probabilities of higher values. 
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V. The prediction of new records 

 

In this paragraph, we will consider 4 higher temperatures, namely 40.6°C, 40.8°C, 41°C, 

41.2°C and compute their probability. 

 

The method is the same as above, but this time 32K   and the last four jn 's are 0, since such 

temperatures have never been recorded before. Each probability is the expectation of the cor-

responding multiple integral : 

 
1 11 1

1 1 1 1...
k k k Kn n nn n

k k k k K K

S

J x x x x x dx dx 

    

with 1,...,32k  . 

 

The program for computation is the same as before (same Maple program), but it takes longer. 

Evaluation of each kJ  requires 30 explicit integrations, and takes about 20 minutes (each time 

with exact symbolic computation). 

 

Here are the results : 

 

 

temp raw data regularized predicted 

35 0,1023 0,1209 0,1170 

35,2 0,0795 0,0997 0,0965 

35,4 0,0909 0,0889 0,0861 

35,6 0,1250 0,0805 0,0780 

35,8 0,0682 0,0707 0,0686 

36 0,0341 0,0631 0,0612 

36,2 0,0795 0,0580 0,0563 

36,4 0,0682 0,0528 0,0513 

36,6 0,0682 0,0476 0,0464 

36,8 0,0455 0,0423 0,0413 

37 0,0341 0,0374 0,0367 

37,2 0,0455 0,0332 0,0327 

37,4 0,0114 0,0289 0,0287 

37,6 0,0227 0,0257 0,0257 

37,8 0,0227 0,0228 0,0230 

38 0,0114 0,0202 0,0205 

38,2 0,0114 0,0179 0,0184 

38,4 0,0114 0,0159 0,0165 

38,6 0,0227 0,0140 0,0148 

38,8 0,0000 0,0121 0,0131 

39 0,0000 0,0105 0,0116 

39,2 0,0000 0,0092 0,0104 

39,4 0,0341 0,0080 0,0093 

39,6 0,0000 0,0064 0,0079 

39,8 0,0000 0,0050 0,0067 

40 0,0000 0,0038 0,0057 

40,2 0,0000 0,0027 0,0048 

40,4 0,0114 0,0017 0,0039 
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40,6 
  

0,0030 

40,8 
  

0,0021 

41 
  

0,0014 

41,2 
  

0,0007 

 
Table 4 : Raw data, regularized and predicted probabilities 

 

In this table, "raw data" are just the recordings : number of days, divided by 88. "Regularized" 

is the set obtained in the previous paragraph, and "predicted" are the data we just obtained. 

Of course, for each column, the sum is 1. 

 

The graph below represents all data : 

 

 
 

Graph 5 : Raw, regularized and predicted data 

 

We observe that, for high temperatures, there are significant differences between regularized 

and predicted data. For instance, temperature 40.4°C had probability 0.0017 ; it has now 

probability 0.0039 : more than double ! This is due to the fact that, in the previous case, it was 

considered as the "high end" of the scale (thus very rare), whereas now it is only one of the 

highest, thus not so rare. We see this on the "zoom" below : 
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Graph 6 : A zoom on the region above 39°C 

 

Let us now compute the probabilities of all these rare events, in this setting. The same reason-

ing as before provides the following results : 

 

 

 

 

  

proba 
among hot 

days 

proba per 
year  

proba not in 
100 years 

proba not in 
1000 years 

duration for 
95 % proba 

(years) 

duration for 
50 % proba 

(years) 

40,4 0,004 0,003 0,769 0,072 1 140 264 

40,6 0,003 0,002 0,819 0,135 1 498 347 

40,8 0,002 0,001 0,867 0,239 2 093 484 

41 0,001 0,001 0,913 0,401 3 279 759 

41,2 0,001 0,000 0,957 0,645 6 831 1 580 

 
Table 7 : Probabilities for extreme temperatures 

 

So we see that, for the temperature 40.4°C, we can reasonably expect (proba 0.5) it to come 

back after 260 years, and we can be quite sure in 1 100 years. For the higher temperature 

41.2°C (which has never been observed), we can reasonably expect it in 1,580 years and be 

quite sure in 6,800 years. 
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VI. Computation of variance 

 

The same methods allow to compute the variance of each kp . We need the three integrals : 

 
1

1 1...
Kn n

K K

S

J x x dx dx   

1 11 1

1 1 1 1...
k k k Kn n nn n

k k k k K K

S

J x x x x x dx dx 

    

1 21 1

1 1 1 1...
k k k Kn n nn n

k k k k K K

S

V x x x x x dx dx 

    

and then : 

 
2

var( ) k k
k

V J
p

J J

 
  

 
 

 

For instance, for 32k  , temperature 41.2°C, the estimated value for the probability, com-

puted above, was 
4

41.2 6.58 10p    and 46.30 10   . 

 

VII. A complete probability law for each kp  

 

In the computations presented above, we gave the expectation of each kp  and we explained 

how to compute its variance. But the question is : can we give the whole probability law for 

each kp  ? 

 

The answer is yes in theory, no in practice, except for the last one, as we will see. 

 

In theory, the repartition function for each kp  is given by the following formula : 

 

( )
( ) k

k

J z
F z

J
  

 

with, as before : 

 
1

1 1...
Kn n

K K

S

J x x dx dx   

1 1( ,..., ) ; ... 0, 1K K k

k

S x x x x x
 

     
 

  

 

and : 

 
1

1 1

( )

( ) ...K

k

n n

k K K

S z

J z x x dx dx 
 

1 1( ) ( ,..., ) ; ... 0, 1;k K K k k

k

S z x x x x x x z
 

      
 


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In practice, the integration over ( )kS z  is quite complicated : one has to distinguish various 

cases, depending on the position of the previous bounds with respect to .z  

 

The only case which is simple is that of the last k  ; in our case, 32k  . We compute directly 

the repartition function, integrating from 0 to z  in the last integral (in the previous computa-

tion, it was between 0 and 
1

32
). The result is a polynomial of degree 119, with extremely large 

coefficients. Here is the leading term : 

 
168 119  -0.105022562293228555795032874957 10  z   

 

The value of z  is between 0 and 
1

32
, so the monomials 

jz  are extremely small, which poses 

considerable difficulties, in terms of numerical computation. As before, all computations are 

made with exact (rational) values, converted to decimal at the end only. One checks that with 

the value 1/ 32z   one has 32 ( ) 1F z  . 

 

Letting 
32

y
z  , we convert our repartition function 32 ( )F z  into a repartition function 

32( )
32

z
G y F

 
  

 
, defined on the interval  0,1 , with more reasonable coefficients. The low de-

gree terms are : 

 
2 3 445.15 1910 36915 410566 2467674 ....y y y y      

 

Here is the graph of this repartition function : 

 

 
 

Graph 8 : The repartition function of the 32-th probability 

 

and here is a zoom on the part between 0 and 0.1 : 
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Graph 9 : Zoom on the interval 0 -0.1 of the repartition function of the 32-th probability 

 

 

 

Here is the graph of the associated density : 

 

 
 

Graph 10 : The density of the 32-th probability 

 

 

 

and a zoom on the interval 0 - 0.1 : 
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Graph 11 : A zoom on the interval 0 - 0.1 of the density of the 32-th probability 

 

We observe that, quite naturally, this density is decreasing. Of course, it is defined on the in-

terval 0 - 1 (a probability is always in this interval), but the low values are more likely than 

the high ones. 
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Annex : a simple case 
 

 

Let us see the application of the method in a very simple case : only two situations are possi-

ble.  

 

The first one was met 1 1n   time, and the second one 2 2n   times. We are looking for the law 

of 1p (or the law of 2 11p p  ). As previously, we assume 1 2p p : the first situation is more 

likely than the second one. 

 

This can be met, for instance, if we study the life expectation of a product : the situation 1 is 

the case where the product lasts ten years at most, and the situation two is the case where the 

product lasts more than ten years. 

 

The law of 2p  is proportional to the function : 

 
2( ) 1 ( )(1 )Sf x c x x x   

 

where c  is a normalization constant, and S is the set : 

 

 ;0 1S x x x     

 

that is : 

 

1
;0

2
S x x

 
   
 

 

 

Let us first compute the coefficient .c  We have : 

 
1/2

2

0

5
(1 )

192
x x dx  , 

 

so : 

 

192

5
c  . 

 

The density of 2p  is the function : 

 

  2

2 2 2 2

192
( ) 1

5
f x x x  , 2

1
0

2
x  , 0 otherwise. 

 

This is the graph of this function : 

 



20 
Extreme events, BB 2009/08 

 
 

Graph of the density of 2p  

 

and the density of 1p is the function : 

 

2

1 1 1 1

192
( ) (1 )

5
f x x x  , 1

1
1

2
x  , 0 otherwise. 

 

Here is the graph of this function : 

 

 
 

Graph of the density of 1p  

 


