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Summary 
 

We have a measurement device, the output of which is assumed to be linear. How should 

we take into account the uncertainties upon the values to be measured x  and upon the 

results of the measurements y ? In practice, we have a "regression line", made from all 

couples ( , )x y  ; we show how to define a probability law on all these lines. 

 

However, we insist upon the fact that the response of a measurement device is never 

linear, and the precision is usually worse on the extremities of the measure scale. So, the 

use of a straight line is not a good idea, since it masks these two realities : non-linearity, 

differences in precision over the whole scale. The correct mathematical approach is that 

of "calibration tables". 
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I. Usual construction 

 

We have N  points in the plane, with coordinates 1,...,( , )n n n Nx y  . The regression line is the 

line with equation y a x b   which minimizes the quantity : 
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Partial derivatives may be written :  
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So we get the system : 
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or : 
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We set : 
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The above equations can be written :  

 

a b     

a Nb    

 

From the second one, we deduce :  
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and, putting back into the first : 
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and therefore : 
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and : 
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If we have explicit values for nx  and ny , we get an explicit value for a  and .b  

 

We now see how to introduce uncertainties both on x  and y . 

 

II. Introduction of uncertainties 

 

Now, we have at our disposition some information of uncertainty on each nx  and each 

ny , under the form of a probability law. 

 

We could : 

 

 Construct a unique regression line, from the average points : this is not satisfac-

tory, because this gives no information at all about the dispersion. 

 

 Construct a unique regression line, minimizing the average distance. 

 

The probability laws on each nx  and each ny  give a probability law on the distance :  
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and one can find the coefficients a  and b  which minimize the average distance : 
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In this formula, we assume for example that each iy  takes  m  positions with same prob-

ability and each nx  follows a uniform law on the interval ,i i i i     . 
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This second possibility is different from the first one : the line constructed that way is 

not the line constructed from the average points. It has the same drawbacks : no proba-

bility law, no measure of dispersion. 

 

So, these two procedures cannot be recommended. We now turn to the satisfactory solu-

tion.  

 

Probabilistic regression line 
 

We let : 

1 1 2 2( , , , ,...)a x y x y  

 

1 1 2 2( , , , ,...)b x y x y  

 

be the explicit expressions of a  and b , as functions of  ,i ix y , given by (1) et (2).  

Then, a probability law on each ,i ix y  gives a probability law on a  and b  : this is the 

probabilistic regression line. Then, we take the expectation of a  and b  for the best 

choice for the line.  

 

With the previous laws, we have : 

 
1 1 2 2

1 2

1 21 1 2 2

1 1, 2 2, , 1 2

1 1 11 2

1 1 1 1 1 1
( , , , ,..., , )

2 2 2

n n

n

nn n

m m m

j j m n j n

j j jn

Ea x y x y x y dx dx dx
m m m

    

     


  

 

    

      

 

 

and the same for b .  

 

Doing things this way, we keep all lines, and we have a law upon the coefficient a  and a 

law on the coefficient b ; we can write confidence intervals, and so on. 

 

If the points ,n nx y  take only discrete value, what we do is as follows : the enumerate all 

possible configurations for  ,n nx y , et construct the line for each configuration. 

 

In practice, the number of configurations is quite high, so one has to use a random me-

thod in order to reconstruct the law upon ,a b . 

 

 

 

 

 

 

 


