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Introduction 

 

As it is well-known (see for instance our recent book [AMW]), Archimedes first established his 

comparison between the volume of a sphere and the volume of the cylinder which contains it, 

using a "Weighing Method". Then, he turned to "analytic" methods, and he introduced what 

became later the integral and differential calculus. Using such analytic methods, he proved for 

instance that the surface of a sphere is 4 times the surface of its great circle. 

 

We are going to show that this result may be easily obtained using the Weighing Method. In 

some sense, we move backwards, using the methods first introduced by Archimedes. We start 

with surfaces and then consider volumes.  

 

We then give modern applications of such "Weighing Methods". 
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Part I : Surfaces 

 

We start with a lemma due to Archimedes, which reduces the computation of the area of 

a circle to the computation of the area of a triangle. 

 

Lemma 1 (Archimedes : "On the meas-

ure of the circle", Proposition 1).   

 

Let a circle with radius r   and let ABC  be 

a triangle with right angle at .B  If 

( )AB perimeter circle  

and  

( )BC radius circle , 

then the triangle and the circle have the 

same area. 

 

 

 

 

 

 

Proof of Lemma 1 

 

We inscribe in the circle a regular polygon with summits nA . The area of a small triangle 

is 1

2

n nA A OH 
  and the area of the polygon is 

1

2

n n

n

A A OH 
 

 

When ,n    ( )a polygon a circle ,  

 

 1n n

n

A A l circle  , OH r   

where  a polygon  denotes the area of the polygon,  l circle  

is its perimeter, and r  is the radius. So we find : 

 

 
( )

2

l circle r
a circle


  

 

which proves the lemma. 
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Corollary 2. - For any ,r   

 

2 2

r rA l

r r
  

 

where rA  is the area of the circle of radius r   and rl   its perimeter. 

This formula is an obvious consequence of Lemma 1 (since 
2

r
r

rl
A  ), but it is interesting 

in itself. The Greeks knew that the quotient of the perimeter of a circle by its diameter is 

constant (they did not use the notation  ) ; they knew also that the quotient of the area 

of a circle by the square of its radius is also constant, and the above formula shows that 

both definitions of    coincide. 

 

***** 

 

In what follows, we consider a sphere, infinitely thin (all the mass is at the surface), with 

radius r . We will study its equilibrium with a disk (also infinitely thin), in the following 

situation: 

 

The sphere has its center at O  and has radius r , 

and SO S r   . The disk is represented by its 

vertical cut (infinitely thin), so it faces the sphere. 

The bar of the balance is the straight line passing 

through , ,S O  and S  is the fixed point. 

 

We first consider the left half-sphere with summit 

at S  and basis at O , and the following 

transformation   from the half sphere to the disk 

with center   : 

 

 P Q P   

 

where ,Q SM   M being the projection of P  on 

the axis. The points , , ,P M Q  belong to the same plane. 

 

Proposition 3. – The transformation   from the left half-sphere onto the disk preserves 

the moment with respect to the point .S  

 

This means that, for any subset E  of the half-sphere, the moment of E  with respect to 

S  is equal to the moment of  E  with respect to the same point. Or, in other words, E  

and  E  are in equilibrium with respect to .S   
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Proof of Proposition 3 

 

Obviously, it is enough to prove this proposition for 

spherical caps.  

 

A spherical cap  ,SC x x  is the portion of the sphere between 

the two parallel planes, orthogonal to the axis ,SO   passing 

through ,M  such that ,SM x  and ,M   such that .SM x   

 

Let us consider a thin slice of sphere, spherical cap between 

the points M  and M  . We set SM x   and MM   . This slice has its center of gravity 

on the segment .MM    

 

Let us consider the segment 

PP  ; the triangles PP R  and 

OHP   are similar (orthogonal 

segments), and therefore: 

 

OH P R

OP PP



 

 

 

which gives: 

 

 
22

OP r
PP P R

OH r r x


  

 
 

 

Therefore, the moment with respect to S  of the slice, spherical cap  ,SC x x   between 

M  and M   is: 

 

     SM slice mass PP perimeter circle SM    

 

which gives: 

 

 
 

 
22

22

2 2S

r
M slice r r x x rx

r r x


      

 
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After the transformation  , the points ,P P  become points ,Q Q  with Q x   and 

QQ   . Therefore, the moment with respect to S  of the annulus between Q   and Q  is: 

 

     distance 2SM annulus a annulus S x r       

 

 and both moments are equivalent when 0,    which proves Proposition 3. 

 

Remark. – This proposition really deals with surfaces. It is not true that the circle 

generated by P  (to which we an assign a weight, proportional to its perimeter) is in 

equilibrium with the circle generated by .Q   

 

Corollary 4. – The half-sphere is in equilibrium with the disk with same radius. 

 

Indeed, we apply the Proposition to all ,x  0 .x r    

 

 

Corollary 5. – For any ,   0 r    , the spherical cap  ,SC    is in 

equilibrium with the annulus  ; ,Ann    (annulus with center  , between the two 

radii   and  ). 

 

Here, we apply the Proposition only to the values between   and .  

 

We now turn to the right half-sphere. The 

transformation   is the same : Q SM  , 

but this time it sends the right half-

sphere to the annulus  ; ,2Ann r r . The 

momentum of a slice between x  and x   

(with x r ) is, as before: 

 

  2SM slice rx   

 

and so is the moment of the corresponding 

annulus in the disk. So we obtain: 

 

Proposition 6. – The transformation   from the right half-sphere onto the annulus 

 ; ,2Ann r r   preserves the moment with respect to the point S . 

 

Corollary 7. – The right half sphere is in equilibrium with the annulus  ; ,2Ann r r . 

 



6 
BB Archimedes Weighing Method, 2013/06 

Corollary 8. – The whole sphere is in equilibrium, with respect to ,S  with the disk 

 ,2D r . 

 

But the center of gravity of the whole sphere is at the point O . Since SO S  , we 

deduce that the weights of both solids are identical, which means that their areas are 

equal: 

 

Corollary 9. – The area of the sphere of radius r  is equal to the area of the disk of radius 

2r . 

 

Since the area of a disk of radius 2r  is 4 times the area of a disk of radius r , we get: 

 

 

Theorem (Archimedes). – The area of the sphere is equal to four times the area of a 

great circle. 

 

 

We can also apply the above results to 

spherical caps. Let  0,SC x  be any 

spherical cap with summit at S  and base 

at ,M  such that ,SM x  and let G  be its 

center of gravity (obviously on the axis). 

Let  2 ,2SC r x r  be the "opposite" 

spherical cap (symmetric of the previous 

one, with respect to the center of the 

sphere). Both caps have the same area; let 

G  be the center of gravity of the second 

cap. The center of gravity of the two caps 

together is O .  

 

By Corollaries 5 and 7, the set made of 

both caps is in equilibrium with the disk  ,D x  plus the annulus  2 ,2Ann r x r . 

Since S SO  , the set "two caps" and the set "disk plus annulus" have the same areas. 

 

But the total area of "disk plus annulus" is    
2 22 2 2 4x r r x rx       , and 

therefore the area of the cap  0,SC x  is 2 rx . 

 

So we have obtained: 

 

Theorem (Archimedes). – For any spherical cap of height x , built on a sphere with 

radius ,r  the area of the cap is 2 .a rx   
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We also deduce the position of the center of gravity of the cap. The equilibrium shows 

that: 

 

     , 0,a D x r a SC x SG     

 

which gives: 

 

2

x
SG   

 

So we have proved: 

 

Theorem (Archimedes). – The center of gravity of a cap of height x  is on the axis of the 

cap, at distance 
2

x
  from the summit. 
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Part II : Volumes 

 

We now turn to the investigation of volumes and position of centers of gravity.We start 

with a cone : 

 

Theorem 1. – The center of gravity of a cone is on the axis, at 3/4 starting from the 

summit. 

 

Proof of Theorem 1 

 

We consider a cone of summit A   and base 2CD   (only a half-cone is represented on 

the figure) ; the height is 2AD  ; so the cone has a right angle at the summit. We also 

have 1.SD AS   
 

 

We consider the piece of cone generated by the rotation of the triangle BCD  around the 

x   axis. The moment with respect to S   of the slice at M  is (with SM x ): 

 

      2 2 21 1 4Smoment slice x x x x        

 

Let G  be the point, left of ,S  such as 4.SG   We may write the above formula: 

 

  2

Smoment slice SG x    

 

When M  moves between S  and D , that is when 0 1,x   the slice generates the 

difference between the truncated cone SBCD  and the cone BSD ; the term 
2SG x  

generates the moment of a cone with base of radius 1r  , height 1,h   and center of 

gravity at G . 
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So, the difference between the truncated cone SBCD  and the cone BSD  is in equilibrium 

around S  with the cone 1C   of base of radius 1r  , height 1,h   and center of gravity at 

.G  

 

To remove the cone BSD  from the right is the same as to add ASB  on the left, which 

gives the complete cone 2C   with summit A , base CD  of radius 2  and height 2.AD   

 

Since the height and radius are double of that of 1C , we have: 

 

   2 18vol C vol C  

 

Let X  be the unknown position of the center of gravity of 2C  (it must be on the axis). 

The above equilibrium gives: 

 

   1 2SG vol C SX vol C    

 

that is: 

 

8

SG
SX   

 

Since 4,SG   we find 
1

2
SX   and 

3 3

2 4

AD
AX   , which shows that the center of the 

gravity is at 3/4 of the height, starting at the summit.   

 

This result, as it stands, was obtained only for the particular cone above, which has a 

right angle. But, quite clearly, it extends to any cone of revolution, since the moments 

with respect to the summit are proportional to the square of the base: increasing the 

radius of the cone increases the same way all moments, and the center of gravity is not 

changed. This proves the Theorem. 

 

We deduce a formula for the volume of a cone. 

 

Theorem 2. – The volume of a cone with right angle and base of radius r  is 
3

3

r
V


   
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Proof of Theorem 2 

 

We consider the following two objects: 

 

First, a juxtaposition of two opposite cones; in this picture, .GS GA GB GC r      

 

Second, a prism, 1 1 1 2 2 2PQ R PQ R  with right angle at 1P  and 2P , with height SH r  and 

base 1 1 2 2 .RQ R Q r    

 

We claim that these two objects are in equilibrium with respect to .S  

 

Let us compute the moment with respect to S  of the two slices of the cones, one at M  

such that SM x  and one at M   such that 2SM r x   . We have: 

 

   2 2 22 2S M MMoment slice slice x x r x x rx          

 

Let us write : 

 
22 2rx x r x     
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This is the moment (with respect to S ) of a rectangular slice at distance x  from S , with 

height 2 r  and width x . Since the height is constant and the width depends linearly on 

,x  this rectangular slice generates a prism, namely 
1 1 1 2 2 2PQ R PQ R . 

 

So these two objects are in equilibrium. Let 
PG  be the center of gravity of the prism. 

Since the center of gravity of the triangles 
1 1 1Q PR  and 

2 2 2Q P R  are on the median, at 2/3 

starting from the summit, this is true for the whole prism, so 
2

3
P

SH
SG  . 

 

The equilibrium implies : 

 

   2PSG vol prism SG vol cones    

 

But the volume of the prism is: 

 

   
2

32
2

r
vol prism a base height r r       

 

and 
2

3
P

r
SG  . Since SG r  and    2 2vol cones vol cone , we get: 

 

 
3 32

3 2 3

r r r
vol cone

r

 
   

 

which proves the Theorem. 

 

Corollary 3. - The volume of any cone of revolution, of height h  and radius r  is 
2

3

hr
  

 

Proof of Corollary 3 

 

We start with a cone with right angle, with height and radius 

;h   its volume is 
3

3

h
, by Theorem 2. Now, consider a cone 

with radius r h  (see figure). The center of gravity is the 

same. The moment with respect to S  is, for a slice at distance 

x  from S  for the right angle cone,   2

SMoment slice x , 

and, for the second cone, 
2 2x . Since the centers of gravity 

have not changed, this means that the volume has been 

multiplied by 
2

2

2

r

h
   ; this proves the corollary. 
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Of course, the quantity 
2r h  is the volume of a cylinder of radius r  and height h , so we 

get: 

 

Corollary 4 (Archimedes). – The volume of the cone is one third of the volume of the 

cylinder with same base and same height. 

 

This statement may be obtained directly by weighing techniques; see our book [AMW], 

but it requires to combine several cones together, as we now see: 

 

In this picture, the cone ,ABC  with summit at ,A  height r , base BC  of radius r , plus 

the cylinder DEFG , height HS r , radius HD HF r  , is in equilibrium around S  

with the piece of cone generated by the rotation of SEIJ  : this is the cone ,IHL  with 

summit at H , truncated at ,E  minus the cone JSK . We have .ES IJ SH r     

 

In order to see this, we use the fact that the moment, with respect to S , of a slice of the 

right set is: 

 

 
2 2 2 2

1 2M x x r x x rx xr         

 

The term 
22r x  corresponds to the moment of the slice of a cone, with its center of 

gravity at the point 1G , with 1 2 .SG r   

 

The term 
2x r  corresponds to the moment of the slice of a cylinder, with radius r  and 

height r  : this is the cylinder .DEFG   

 

So the truncated cone EIGL , minus the cone JSK  is in equilibrium around S  with the 

cone ,ABC  center of gravity at 1,G  plus the cylinder .DEFG  The result follows, using 

the same computations as previously. 

***** 
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The sphere and the cylinder 

 

We now come back on the result Archimedes originally proved using his Weighing 

Method.  

 

Instead of considering the moment of one bar, as Archimedes did, we now consider the 

moment with respect to S  of two bars, symmetric with respect to the center O   of the 

sphere ; this improves slightly upon Archimedes' approach: 

 

The moment with respect to S  of the 

slice at M  is: 

 

  2

S MM slice SM MP   

 

and for the slice at M  : 

 

  2

S MM slice SM MP
   

 

But since 2 2 ,SM SM SO r    we 

get: 

 

  22S M MM slice slice rMP   

 

But: 

 

     2 2 2MP OP OM OP OM OP OM OS OM OS OM SM SM            

 

Let, as before, SM x ; we get: 

 

    2 22 2 4 2S M MM slice slice rx r x r x rx        

 

It follows from this formula that the two slices (considered together) are in equilibrium 

with respect to S  with the following two objects (considered together) : 

 

– At distance ,x  left of ,S a disk of radius 2r  ; 

 

– At distance 2 ,r   right of ,S  a disk of radius .r   

 

When M  moves between S  and O , the first disk generates a cylinder, since the radius 

is constant. This cylinder has a height equal to r . 
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The second disk generates a cone, since the radius increases with the distance. This cone 

has its center of gravity at ,S  point symmetric to S  with respect to O , (so 2SS r  ). 

 

The ball, where it is, is in equilibrium with respect to S  with the cylinder of height r , 

radius 2r , put left of S , and the cone of height r , circular base of radius ,r  with its 

center of gravity at .S   

 

Since a cone has its center of gravity on the axis, at 3/4 from the summit, we may take a 

cone which has its summit at A  with / 4OA r . Of course, any rotation of the cone 

around S   will have the same weight and moment with respect to .S  
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Now, still keeping the equilibrium, we want to replace the cone ABC  by a cylinder 1C , 

with same base BC  (radius r  ) and same height AH r . Since the volume of the 

cylinder is triple of the volume of the cone (Corollary 4 above), the center of gravity 1G  

will satisfy: 

1

1 2

3 3

r
SG SS   

 

Let us decrease the radius of the left cylinder from 2r   to r , still keeping the 

equilibrium and the same height, namely r . Then the weight is divided by 4  , so the 

center of gravity of this new cylinder 2C  will satisfy 2

4
2

2

r
SG r   and the height is 4r  : 
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On this picture, the red cylinder 
2C  (left) is in equilibrium around S  with the ball and 

the red cylinder 
1C  (right). 

 

This means: 

2 1

2
2 ( ) ( ) ( )

3

r
r vol C r vol ball vol C   

 

But since 
1C  and 2C  have the same volume : 

 

   1

3

4
vol Ball vol C  

 

The cylinder 1C  has radius r   and height ,r  so its height is one half of the height of the 

cylinder enclosing the ball. We get finally: 

 

Theorem (Archimedes). – The volume of the ball is 
2

3
 of the volume of the enclosing 

cylinder (same radius, height 2r ). 
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A simple  application 

 

We have a solid of revolution, which is irregular (right of the figure below), and we want 

to determine a more regular solid, with same volume and same moment with respect to a 

given point. On the left of the picture below, the more regular solid is "decreasing", from 

left to right. Only the upper part of the solids appear on the picture below, but they are 

assumed to be revolution solids, with respect to the Ox  axis. 

 

 
 

We discretize our original solid in small cylinders ; it does not matter whether these 

cylinders have equal thickness or not). Then we can put these cylinders in decreasing 

order of radii on the left side of the axis : we clearly have a solid with same volume, 

which is decreasing in the sense we explained. 

 

Now, if we move this new solid to the left, the moment increases, and if we move it 

towards the origin, the moment decreases. So there will be a unique position where the 

old solid and the new one will be in equilibrium. 

 

The position of the center of gravity G  is very easy to characterize : indeed, one must 

have OG OG , since the weights of the two solids are equal. 
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Part III: Modern Times 

 

 

A general use of Archimedes Weighing Method (AWM) is the following: we have some 

"signal" (this word being taken in a very general sense) which is unknown, or not 

completely known, and we generate artificially another "signal" and we compare it to the 

original one. 

 

An example (see [AMW]) is given by the receiver in a GPS system: each satellite sends a 

signal, from which it is possible to deduce the distance from the receiver to the satellite. 

But this signal is usually too weak to be exploited directly. So the receiver generates a 

similar signal, and tries time translations of the generated signal, and finds the time 

translated signal which fits best with the received one. This is a typical application of a 

Weighing Method.  

 

Such applications are always "robust", because the signal which is emitted is well-

known; this is why they are used in difficult situations. 

 

A similar idea was used by SCM in defining "prospective indicators" (see 

http://scmsa.eu/fiches/SCM_Indicateurs_prospectifs.pdf): 

 

We study some quantity I , say the price of corn, and we want to anticipate its variation 

over a one year period. We find in some database, such as Bloomberg, a set of 3 

indicators 
1 2 3, ,I I I , such that the triple so defined is best correlated to our indicator, with 

a one year time shift. Say for instance that, with some high probability, I  increases 

when 1I  increases and both 2 3,I I  decrease. Then we can say that the information we 

require (namely the variation of I ) is almost the same as the information generated by 

the triple 1 2 3, ,I I I . We generate an artificial information, namely 1 2 3, ,I I I , and we use it 

in order to predict I , since they are almost "in equilibrium". 

 

A more general situation occurs when the information we generate artificially is also 

subject to some uncertainty, or if we need to reconcile several artificially generated 

informations, which do not seem to be compatible at first sight. 

 

A typical example is that of GPS, when more than 3 satellites are seen: each satellite 

sends its own information of distance, which means that the receiver is situated on some 

sphere centered at the satellite. Usually, 4 spheres or more have an empty intersection, 

so probabilistic tools are needed to evaluate, for each position of the receiver, the 

probability to be at that place. This is called "data fusion", and is investigated in the 

book [MPPR]. 
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A simple example of such a situation is 

given by lines of sight: a light house is 

seen by 3 vessels, or more (or by a 

single vessel which moves); each vessel 

indicates its line of sight, but the lines 

do not converge at a single point. 

 

 

 

 

 

 

 

 

 

A third type of application is the one we meet when partial information is given: for 

instance, we have indications about the level of pollution in a field, at some places (this 

is an artificially generated information) and we want to reconstruct the level of pollution 

at other places. Such problems are investigated in the book [PIT]. 
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